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ON w-QUASICONVEX FUNCTIONS

JACEK TABOR, JOZEF TABOR AND MAREK ZOEDAK

(Communicated by S. Varosanec)

Abstract. In the paper we introduce convexity-like notions based on modification of quasicon-
vexity.

DEFINITION. Let / be a real interval and @ > 0 a given number. We say that a function
f:1— R is w-quasiconvex, ®-quasiconcave, respectively, if
Flex+(1=1)y) <max(£(x), £(y))—wmin(t, 1 — 1) —y],
Flex+(1=1)y) > max(£(x), £(y)—wmax(t, 1 — 1) r—y],
forx,y € I,t € (0,1).

If f:1— R is simultaneously ®-quasiconvex and ®-quasiconcave then we say that f is
o -quasiaffine.

We characterize these notions, in particular we show that ® -quasiconcave functions co-
incide with Lipschitz functions with constant @. We conclude the paper with the following
separation type result.

THEOREM. Let f:1 — R be w-quasiconvex function and g:/ — R @ -quasiconcave such that
fzs.
Then there exists an @ -quasiaffine function #:/ — R such that f >h>g.

1. Introduction

The notion of quasiconvex function is a very far generalization of the convex func-
tion. Let I be a real interval. A function f:1 — R is called quasiconvex [1, 4] if

Flex+(1—1)y) <max(F(x). f(y))  forx.y€ L€ (0,1). (1)

This notion occured to be very useful in mathematical economics (for more information
and further references see [1]). As quasiconvexity is a rather weak assumption, there
appeared a natural need to strenghten it. In such a way, in an analogy to strict con-
vexity, there appeared the notion of strict quasiconvexity [1]. A function f is strictly
quasiconvex if

Flex+ (1= 1)y) < max(F(x), f(y))  forxyeLx#£y 1€ (0,1).
Mathematics subject classification (2010): 26B25, 39B62.
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Following the way from convexity to strong convexity [9] (see also [8, 7]), which relies
on subtracting from the right hand side of (1) a nonnegative expression, we introduce
the notion of ®-quasiconvexity. Let ®w > 0 be a given number. A function f is @-
quasiconvex if

flex+(1—1)y) <max(f(x),f(y)) — @min(r,1 —¢t)|x—y| forx,y € [,x#y,t € (0,1).

Observe that for ® > 0 every w-quasiconvex function is strictly quasiconvex, while for
o = 0 we obtain classical quasiconvexity. The above condition for t = % was studied in
[10]. It follows from Theorem 2.2 [10] that there are no @-quasiconvex functions with
@ > 0 on convex domain of dimension greater then one (obviously in multidimensional
case | |” is replaced by || || ).

A similar approach was earlier applied in [5], where the notion of strong quasi-
convexity was introduced. A function f is strongly quasiconvex if for a certain @ > 0

flx+ (1 —1)y) <max(f(x), f(y)) —@t(1 —1)|x—y|*> forx,y €I,z €[0,1].

In our opinion w-quasiconvexity has a stronger resemblance to the convexity theory
than strong quasiconvexity. The reasons behind this assertion are the following:

e -quasiconvexity is a local notion, that is a locally w-quasiconvex function is
-quasiconvex;

e (»-quasi-convexity/concavity/affinity have a very natural geometric description.
In particular, w-quasiconvex functions are functions which first decrease and
then increase with speed not smaller then @; w-quasiconcave functions coin-
cide with Lipschitz functions with constant ; and ®-quasiaffine functions are
functions of the form x — @|x — xo| + yo;

e We can naturally define @-quasiconcave and w-quasiaffine functions in such
a way that we can separate m-quasiconvex functions from ®-quasiconcave by
w-quasiaffine ones.

2. Characterization of ®-quasiconvexity

Now we are ready to proceed with formal definition. In the whole paper we assume
that 7 is a nondegenera‘tel subinterval of R and @ > 0 is a given number.

DEFINITION 2.1. We say that a function f:/ — R is
(i) w-quasiconvex if
flex+(1=1)y) <max(f(x),f(v)) — @min(z, 1 —)x—y|
forall x,yel, e (0,1);

Lan interval is degenerate if it is either empty or a singleton.
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(i) w-quasiconcave if

flox+(1=1)y) > max(f(x), f(y)) — @max(r,1 —1)|x —y|
forall x,y€l,t € (0,1);
(iii) -quasiaffine if it is simultaneously @ -quasiconvex and @ -quasiconcave.

One can directly verify that the maximum of two w-quasiconvex functions is ®-
quasiconvex and that minimum of two ®-quasiconcave functions is @-quasiconcave.
We introduce the following denotations. Let f : I — R be any function. If

)= fO)
x—y
then we will write that f €\, (@) and if
) = f()
x—y
then we write that f € /' (). In case if @ =0 instead of f €\, (0), f €, (0) we

will write f € 7, f &\ respectively.
We begin our considerations with the case of monotonic functions.

<—w forx,yel, x#y

> forx,yel, x#y

PROPOSITION 2.1. (i) A nondecreasing function [ :1 — R is w-quasiconvex if

and only if f €\, ().

(ii) A nondecreasing function f:1 — R is @-quasiconvex if and only if f € /* (o).

Proof. One can easily notice that (ii) follows from (i) by applying in the domain
the substitution x — —x.

We prove (i). Assume that f : I — R is nonincreasing and ®-quasiconvex. We
prove that f €\, (o). Since f is monotonic it is sufficient to show that f|in s €\,
(w). Consider an arbitrary z € int /. We can find a neighbourhood I, of z such that
21, —1I, C intI. Obviously I, C 21, —I,. Let us consider arbitrary x,y € I, x <y. Then

we have 5
100 = (22 < - 0ty

It proves that f|;, €\, (). Since it holds for each z € int I and respective neighbour-
hood I, of z, we obtain that f|in ; €\, (®).

Assume now that f €Y\, (@). We prove that f is ®-quasiconvex. Consider arbi-
trary x,y € I, t € (0,1). Without loss of generality we may assume that x < y. Then

we have
S~ flex+(1=1)y) _
x—(tx+ (1 —=1)y)

Whence we obtain

flax+(1=1)y) < f(x) — o1 —1)(y —x)
<max(f(x),f(y) —ot(1—1)x—y[. O
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Given (possibly empty) sets I;,lo C R, we write that I} < I if x; < x, for all
xirelhh, xxeb.

THEOREM 2.1. A function f:1 — R is w-quasiconvex if and only if there exist
(possibly degenerate) intervals 11,1, Iy < I such that [ =1y Ul and

fln €N () and fl;, €/ (@) 2

Proof. Assume that f is @-quasiconvex. Then it is quasiconvex. By [1, Theorem
2.5.1] there exist intervals [; < I, such that I; UL =1 and f|;, €\, and f|, €.
Proposition 2.1 proves (2).

Assume now that I;,I, are subintervals of I such that I} <I,, I =1; Ul and (2)
is valid. Consider arbitrary x,y € I, x <y, t € (0,1). If x,y € I, or x,y € I, then by
Proposition 2.1 applied to functions f|;, , f|, respectively we obtain that

fltx+(1—1)y) < max(f(x), f(y)) — @min(t, 1 —1)|x - y|.
So assume now that x € I1,y € I . Two cases may occur.
If tx+ (1 —¢)y € I} then
Jlx+(1—1)y) = fx)
(I=1)(y—x)

< —o.

Whence we obtain
Flext (100 < Fx) ~ 0(1- 1)y )
< max(f(x), f(y)) — @min(r, 1 —1)x—y|.
In the case when tx+ (1 —t)y € I, we obtain that

f0) = flext (1 =0))

> o,
t(y—x)

and consequently

flx+(1=1)y) < f(y) — 01(y —x)
<max(f(x),f(y)) —omin(t,1 —t)[x—y|. O

Theorem 2.1 can be written in a more explicit way if one of the intervals I}, is
degenerate. If I, is a degenerate then (2) takes the form

Flngsup 1y €N (@),

while when [ is degenerate it takes the form

flngnt 1y €/ (@).

Taking in mind the above remarks Theorem 2.1 can be written as follows.
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COROLLARY 2.1. A function f :1 — R is ®-quasiconvex if and only if exactly
one the following conditions hold:

(i) flngsup 1 €N (@) or flpgint np €/ (@);

(ii) there exists an xy € int I such that

Flin(—en) €N (@) and flin(xy ) €/ (@)

or

Flin(=eoxg) €N\ (@) and [l ) €,/ (@)

We are going to show that w-quasiconvexity has a local character. We begin with
some new notations. Let Iy be a subinterval of 1. We denote

Iy ={xel:{x}<Ip}, Ij :=={xel:ly<{x}}.

Then evidently
Iy < <Ij

and
_ - +
I=1,UlhUl;.

LEMMA 2.1. Let f:1— R be locally w-quasiconvex and let Iy be a nonempty
open subinterval of 1. If fl;, €\, (@) then f‘lgulo e\ (o) and if fl, €,/ () then

f‘]oulo+ €/ (o).

Proof. Assume that f, I, Iy have the meaning specified in the Lemma. Let
Sl €\ (w). We fix arbitrarily xo € Iy and consider an arbitrary x € I, x < xo. Then,
by the compactness argument, we can find a sequence in

X=X <..<x1 <X

and their open neighbourhoods I;, i=1,...,n; I, := Iy, such that f \ I, is @W-quasiconvex
fori=1,...,n and
L,NL,  #0 fori=1,..,n.

We claim that f[, €, (@). Suppose for the proof by contradiction that it is not
the case. Then in virtue of Corollary 2.1 there exists an open interval / C Iy, such
that [N 1y, # 0 and f|; €,/ (w). But then f|1~mx0 €,/ (), which contradicts to our
assumption that f|; €\ (®). Hence f[;, €\ (@) and consequently fl, ur, €\
(). Continuing this procedure we obtain that f| I, U...ULy, e\, (o). Since x, =x < xo
was arbitrary it proves that f]| Io Ul \ (o).

The second part of the assertion easily follows from the first applied for the map-
ping x — f(—x). O

THEOREM 2.2. If f: 1 — R is locally w-quasiconvex then it is ®-quasiconvex.
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Proof. Assume that f:I — R is locally w-quasiconvex. For each x € int [ we
choose an open neighbourhood I, C int I such that f|;, is ®-quasiconvex. Three cases
may occur.

19, fl;, €\ () forall x€ [.7.

Then by Lemma 2.1 we obtain that f|p up 73 €\ (@). By Corollary 2.1 it implies
that f is w-quasiconvex.

20, fl €/ (o) forall xe [ 7.

By Lemma 2.1 we conclude that f|p inr 1y € (@) and consequently by Corol-
lary 2.1 that f is w-quasiconvex.

30 Neither 1° nor 2° is valid. Let

I\ = {x S intI\HSx >0: f|lxﬁ()f*5x7x+5x) eNy ((D)},
I/ = {x € 1‘35)6 >0: f|1xﬁ()€—§nx+5x) 6/ ((D)}

One can easily observe that I\ and [ » are open and disjoint subsets of int /. Since
int I is connected, we obtain that int I # L UI ~, and therefore there exists an x €
(il’lt I) \ (1\ Ul/) . Thus

[l & (@) and fli &7 ().
Since f|, is w-quasiconvex, by Corollary 2.1 there exists an x( € I, such that
Flrn(=eo o) €N (@) and £l (5.0 €/ (0)

or
f|Ixﬁ(7oo,x0) E\ ((D) and f|Ixﬁ[x0,oo) 6/ ((D)
Then by Lemma 2.1 we obtain that

Flin(=eoxo) €\ (@) and £l (5 0) €./ (@)

or
f|1ﬁ(7oo7x0) 6\« ((D) and f|1ﬁ[x0,oo) 6/ ((D)
Now by Corollary 2.1 we get that f is w-quasiconvex. [

3. Characterizations of ®-quasiconcavity and o -quasiaffinity

In this section we characterize w-quasiconcave and ® -quasiaffine functions.

THEOREM 3.1. Let I be open, and let f:1 — R be w-quasiconcave. Then f is
Lipschitz with constant ®.

Proof. Consider arbitrary x,y € I, x < y. Let ngp € N be such that

1 1 1
x——¢cl, y+—el, —<y—x.
no no no
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We put
1 1
Xp:=x——, yp:=y+— forneN, n>ng.
n n
Then x,,y, €I for n € N,n > ny. We have for n € N, n > ny

_ Yn—Yy y—x
y="—=x+ Vn,
Yn—X Yn—X

and hence

1 _
() = max(£(x), f()) — @max (y_;+l7yij 1) \x_y_;

n

n

|
>fx)—olx—y——|.
n
Whence we get
1
f)—fx) = - x—y——' forn € N, n > no. 3)
n

Similarly we have for n € N, n > ng

Y —Xn Y —Xn
_ 1 1
> max n — Mmax , n —y—=|> —0lx—y—=
(f (), f (V) e R | fO)-olx—y—-
and hence

1
f(x)—f(y)Z—wx—y——’ forn €N, n > ng. 4)

n

Letting in (3), (4) n — oo we obtain that
f()—fO)<wlx—y. O
Now we characterize ®-quasiconcave functions.

THEOREM 3.2. A function [ :I — R is @-quasiconcave if and only if flin 1 is
Lipschitz with the constant ® and

flinf 1)< tim f(x) ifinf I €1, )
f(sup I) < lim If(x)ifsuple]. (6)
X—sup
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Proof. Assume that f: I — R is @-quasiconcave. By Theorem 3.1 flin; is
Lipschitz with the constant @ . Suppose that inf / € /. Then there exists a finite limit
lim,_inf 7 f(x). We have

f<i“f;+y> > max(f(inf 1), f(y ))——\mfl N
>f(1nf1)——\1nf1 y| foryel

Letting in this inequality y — inf I we get

lim f(x) > f(inf I).

x—inf 1

Similarly one can show condition (6).
Assume now that f|i ; is Lipschitz with the constant @ and that conditions (5)
and (6) are satisfied. We define function f :/ — R in the following way

fx) forx € int/,

Fa) =4 Jim SO0 ifinf 7€l o

lim f( ) if sup I € I.

x—sup [

Then obviously f is Lipschitz with the constant @ . Therefore we have for x,y €
I, 1,1 €[0,1]

—ol =1 [x—y| < flex+ (1=1)y) = f(t'x+ (1 =1)y).

Substituting sequentially #/ =0 and ¢’ = 1 in the above inequality we obtain for x,y €I,
t€10,1]

flex+(1=1)y) > f(y) - orlx—y| > f(y) — @max(t,1 - 1)|lx ],
flex+(1=1)y) > f(x) =01 =1)lx—y| > f(x) — omax(r, 1 —1)|]x—y|.
Hence
Fltx+(1—1)y) = max(f(x), f(y)) —wmax(t,1—t)|x—y| forx,yel, t€[0,1]. (8)
Whence and from (7) we obtain
fltx+(1—1)y) > max(f(x), f(y)) —omax(t,1 —t)[x—y| forx,y€intl, t < (0,1).
To prove that f is w-quasiconcave we have to consider yet the following cases:
(@) x=infI€l,ycintl],
(b) xeintl,y=suplel,

(c) x=inflel,y=suplel.
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In case (a) by (8), (7) and (5) we get for 1 € (0,1)

f(t inf I+ (1 —1¢)y) = max(f(inf I), f(v)) — @max(¢,1 —¢)|inf [ —y|
> max(f(inf I), f(y)) — omax(¢,1 —¢)|inf I —y|.

The case (b) is analogous.
In case (c) by (7), (8), (5) and (6) we obtain for ¢ € (0,1)

f(t inf I+ (1—1¢)sup I) = max(f(inf I), f(sup I)) — wmax(z,1 —¢)|inf I —sup |
> max(f(inf I), f(sup 1)) — wmax(¢,1 —7)|inf I —sup I|. O

The next results gives a characterization of ®-quasiaffine functions.

THEOREM 3.3. A function f:1 — R is w-quasiaffine if and only if it has one of
the following forms:

(i) f(x)=—wx+yy for x €I\ {sup I}, where yo € R
and
f(sup ) < —wsup I+ypifsup [ €1;

(ii) f(x) = wx+yo for x €I\ {inf I}, where yo € R
and
f(nf I) < winf I+yg if inf I €1,

(i) f(x) = o|x —xo| +yo for x € I, where xo € int1, yo € R.

Proof. Tt follows from Theorems 2.1 and 3.2 that the functions of the above forms
are m-quasiaffine.

Assume now that f:I — R is w-quasiaffine. Then by Corollary 2.1, either
FIngsupry €N (@) or flpingry €/ (@) or there exists an xo € [ such that f;n_e. v
N (@) and fln(xe) €/ (®) OF flin(—eo ) €N\ (@) and flir ) €/ (@).

In the first case by Theorem 3.2 we obtain that

J&)—f()
xX—y

=—m forx,yeintl, x#y,

which implies that there exists a yg € R such that
fx)=—wx+y) forxeintl
Since f] I\{sup 7} 1S nonincreasing we obtain from Theorem 3.2 that if inf / € I then

fGnf I)= lim f(x) = —winf I +yy.

x—inf 1

Furthermore if sup I € I then by Theorem 3.2 we have

f(sup I) < lim f(x) = —wx+yp.

x—sup [
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By the similar reasoning in the second case we obtain that f has the form (ii).
Consider now the third case. By the same argumentation as in the first and second
case we obtain that there exist y;,y» € R such that

f(x)=—ox+y; forxelIn(—e,xp),
f(xX)=wx+y, forxelIn(xg,oo).
Since f is continuous on int /, the above conditions implies that f is of the form
Gii). O
As the direct corollary from Theorem 3.2 we obtain the following result.

COROLLARY 3.1. If a function f: 1 — R is locally ®-quasiconcave then it is
w-quasiconcave.

As the direct consequence of Theorem 2.2 and Corollary 3.1 we get analogous
result for @-quasiaffinity.

COROLLARY 3.2. Ifa function f:I — R is locally -quasiaffine then it is -
quasiaffine.

4. Separation

Now we prove “sandwich” type theorem. Such the result is characteristic for con-
vex functions.

THEOREM 4.1. Let f:1 — R be w-quasiconvex, g :1 — R ®-quasiconcave,
and let

gx) < f(x) forxel. )

Then there exists an ®-quasiaffine function h: I — R which separates f and g, i.e.

f(x) = h(x) >gx) forxel (10)

Proof. Consider first the case when f is of the form (iii) from Corollary 2.1. It
means that there exists an xo € int I such that f|;n(_e ;) €\ (@), flin(yg-) €/ (@).
Then there exist the limits:

lim f(x), lim f(x).

X=X X=X

In view of (9) we have

g(xo) < lim f(x) and g(xp) < 1im+f(x).

X=X X=X

We put
Yo :=min( lim f(x), f(xo), lim f(x)).

X=X X=X
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Then
g(x0) <o (11)
and
f(x)=yy forxel (12)
We define

h(x) == w|x—xo| +yo forxel.

By Theorem 3.3 the function /4 is w-quasiaffine. By (11) and (12) we have

g(xo0) < yo = h(xp) < f(xo)- (13)

Since f|j(xy,) €/ (@) and g is Lipschitz with the constant @, in virtue of (13) we
obtain that
g(x) <h(x) < f(x) forxelnxg,e).

Similarly, since f|;n(—wv,) €\ (@) and g is Lipschitz with the constant @, in view of
(13) we get

g(x) <h(x) < f(x) forxeIN(—oo,xp).
We have proved (10).

Now we assume that f is of the form (ii) from Corollary 2.1, i.e. that f| N\ inf 1y €/
(w). We are going to prove that

sup [g(x) — @x] < inf [£(x) — . (14)
xeint x€int 1
Let a:=inf I. Since f|p(q, €/ (), the function 7'\ {a} 3 x — f(x) — wx is
nondecreasing. It follows from Theorem 3.2 that the function glin ; is Lipschitz with
the constant @ . Therefore we have for x,y cint/, x <y

o(x—y) <gx)—g(y)

and consequently that
8(x) — x> g(y) — wy,
which means that the function int / 3 x — g(x) — @wx is nonincreasing. Hence there
exist the limits
lim [f(x) — wx], lim [g(x)— ox]

and
lim+ [f(x) — ox] = ei'nfl[f(x) — x], (15)
lim [g(x) — wx] = sup [f(x) — wx]. (16)
x—at x€int 1

Obviously we have
gx)—ox< f(x) —wx  forxel

From this inequality, (15) and (16) we obtain (14).
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We fix an arbitrary yp € R such that

sup [g(x) —@x] <yo < inf [f(x) — wx]. (17)
xeint I x€int 1

The existence of such yg is guaranteed by (14). We put

_ fox+yo forxel\{a}
8x) = {g(a) forx=aifacINR. (18)

Assume that a € INR. Making use of (17), (16) and next Theorem 3.2 we obtain that

yo = lim [g(x) — wx] = lim g(x) — wa > g(a) — wa.
+ x—at

X—a
Whence we have
h(a) = g(a) < wa+ yo. (19)
In view of Theorem 3.3 this together with (18) mean that % is w-quasiaffine.
Now we prove that
gx) <hlx) < f(x) forxel. (20)

For x € int [ it follows directly from (17) and (18).
Assume that a € INR. Since

glx) < flx) forxel,
in view of (19) we have
g(a) = h(a) < f(a).
It remains to consider the case if sup / € INR. We have to prove that then
g(sup I) < wsup I+yo < f(sup ). @2y

It follows from Theorem 3.2 that

glsup 1) < lim g(x). (22)

x—sup [
Since the function int / 5 x — g(x) — wx is nonincreasing, we obtain from (17)

lim [g(x) — ox] < sup [g(x) — wx] < yo,
x—sup [ xeint 1
i.e.
lim g(x) < @sup I+ yo.

x—sup [
This inequality and (22) yields the first inequality in (21). Now we prove the second
one. Since the function 7\ {a} 3 x — f(x) — @x is nondecreasing we obtain from (17)

yo < inf [f(x)—wx] < lim [f(x) — x]

xeint 1 x—supl

= lim f(x)—@sup I < f(supl)— wsup I.

x—sup [



ON ®-QUASICONVEX FUNCTIONS 857

Hence

osup I+yo < f(sup I).

We have proved that the function % defined by (18) is w-affine and that it separates f

and

g.
In the case when f is of the form (i) from Theorem 2.1 we can get the assertion

by a similar reasoning. We can also reduce this case to the previous one by applying
the substitution —/ 3 x +— —x. [
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