GENERALIZED WEIGHTED COMPOSITION OPERATORS
FROM BERS–TYPE SPACES INTO BLOCH–TYPE SPACES

XIANGLING ZHU

(Communicated by I. Perić)

Abstract. New criteria for the boundedness and the compactness of the generalized weighted composition operators from Bers-type spaces into Bloch-type spaces are given in this paper.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ be the space of analytic functions on \mathbb{D}. Let $\alpha > 0$. The Bers-type space, denoted by H_{α}^{∞}, is the space consisting of all $f \in H(\mathbb{D})$ such that

$$\|f\|_{H_{\alpha}^{\infty}} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f(z)| < \infty.$$

H_{α}^{∞} is a Banach space under the norm $\|\cdot\|_{H_{\alpha}^{\infty}}$. The little Bers-type space, denoted by $H_{\alpha,0}^{\infty}$, is the subspace of H_{α}^{∞} consisting of those $f \in H_{\alpha}^{\infty}$ such that

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} |f(z)| = 0.$$

Let $\beta > 0$. The Bloch-type space B_{β} is defined as the set of functions $f \in H(\mathbb{D})$ such that

$$B_{\beta}(f) = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |f'(z)| < \infty.$$

B_{β} becomes a Banach space with the norm $\|f\|_{B_{\beta}} = |f(0)| + B_{\beta}(f)$. When $\beta = 1$, $B^1 = B$ is the classical Bloch space. For more information on Bloch-type spaces on the unit disk, see, e.g., [34].

In this paper, φ always denotes a nonconstant analytic self-map of \mathbb{D}. The composition operator C_{φ}, induced by φ, is defined by

$$C_{\varphi}f = f \circ \varphi$$

Keywords and phrases: Generalized weighted composition operators, Bers-type space, Bloch-type space.
for $f \in H(\mathbb{D})$. A fundamental and interesting problem concerning composition operators is to relate function theoretic properties of φ to operator theoretic properties of C_φ on various spaces (see, e.g., [3]).

Let $u \in H(\mathbb{D})$. The weighted composition operator uC_φ, induced by φ and u, is defined by

$$(uC_\varphi f)(z) = u(z) \cdot f(\varphi(z)), \ f \in H(\mathbb{D}).$$

Let D be the differentiation operator and n be a nonnegative integer. Denote

$Df = f', \ D^n f = f^{(n)}, \ f \in H(\mathbb{D}).$

The generalized weighted composition operator $D^n_{\varphi, u}$, introduced by the author of this paper, is defined as follows (see [35, 36, 37]).

$$(D^n_{\varphi, u} f)(z) = u(z) \cdot f^{(n)}(\varphi(z)), \ f \in H(\mathbb{D}), \ z \in \mathbb{D}.$$

When $n = 0$, then $D^n_{\varphi, u} = uC_\varphi$. When $n = 0$ and $u(z) \equiv 1$, then we get the composition operator C_φ. When $n = 1$, $u(z) = \varphi'(z)$, then $D^n_{\varphi, u} = DC_\varphi$. When $n = 1$ and $u(z) = 1$, then $D^n_{\varphi, u} = C_\varphi D$. The operators DC_φ and $C_\varphi D$ were studied, for example, in [7, 9, 12, 13, 19, 20, 24, 27, 31, 33].

Composition operators, weighted composition operators and generalized weighted composition operators between Bers-type spaces and some other spaces in one, as well as, in several complex variables were studied in [4, 5, 6, 17, 18, 19, 21, 22, 30, 32, 35, 38], while composition operators, weighted composition operators and generalized weighted composition operators between Bloch-type spaces and some other spaces in one and several complex variables were studied, for example, in [1, 2, 8, 10, 11, 14, 15, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 32, 36, 39].

In this paper, motivated by [1, 2], we give a new criterion for the boundedness or compactness of the operator $D^n_{\varphi, u}$ from Bers-type spaces to Bloch-type spaces, namely we use two families of functions to characterize the generalized weighted composition operators $D^n_{\varphi, u} : \mathcal{H}_\alpha^\infty \to \mathcal{B}^\beta$.

Throughout the paper, C denotes a positive constant which may differ from one occurrence to the other. The notation $A \asymp B$ means that there exists a positive constant C such that $B/C \leq A \leq CB$.

2. Main results and proofs

In this section we give our main results and proofs. For this purpose, we need two lemmas as follows.

Lemma 1. Assume that $0 < \alpha < \infty$. Let $f \in \mathcal{H}_\alpha^\infty$. Then there is a positive constant C independent of f such that

$$|f^{(n)}(z)| \leq C \frac{\|f\|_{\mathcal{H}_\alpha^\infty}}{(1 - |z|^2)^{\alpha + n}}.$$
Proof. Using the fact
\[
\sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha+1} |f'(z)|,
\]
and the fact that for \(f \in \mathcal{B}_\beta \) (see [34]),
\[
\sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |f'(z)| \leq |f'(0)| + \cdots + |f^{(n-1)}(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta+n-1} |f^{(n)}(z)|,
\]
we immediately get the desired result. \(\square \)

The following criterion follows from standard arguments similar to those outlined in Proposition 3.11 of [3].

Lemma 2. Let \(u \in H(\mathbb{D}) \), \(0 < \alpha, \beta < \infty \), \(\varphi \) be an analytic self-map of \(\mathbb{D} \) and \(n \) be a nonnegative integer. The operator \(D^n_{\varphi,u} : H^\infty_\alpha \) (or \(H^\infty_{\alpha,0} \)) \(\to \mathcal{B}_\beta \) is compact if and only if \(D^n_{\varphi,u} : H^\infty_\alpha \) (or \(H^\infty_{\alpha,0} \)) \(\to \mathcal{B}_\beta \) is bounded and for any bounded sequence \((f_k)_{k \in \mathbb{N}} \) in \(H^\infty_\alpha \) (or \(H^\infty_{\alpha,0} \)) which converges to zero uniformly on compact subsets of \(\mathbb{D} \), we have \(\|D^n_{\varphi,u}f_k\|_{\mathcal{B}_\beta} \to 0 \) as \(k \to \infty \).

For \(a \in \mathbb{D} \), set
\[
f_a(z) = \frac{(1 - |a|^2)}{(1 - \overline{a}z)^{\alpha+1}}, \quad \text{and} \quad g_a(z) = \left(\frac{1 - |a|^2}{1 - \overline{a}z} \right) f_a(z).
\]

Next, we will use these two families of functions to characterize the generalized weighted composition operators \(D^n_{\varphi,u} : H^\infty_\alpha \to \mathcal{B}_\beta \).

Theorem 1. Let \(u \in H(\mathbb{D}) \), \(0 < \alpha, \beta < \infty \), \(\varphi \) be an analytic self-map of \(\mathbb{D} \) and \(n \) be a nonnegative integer. Then the following statements are equivalent:

(a) The operator \(D^n_{\varphi,u} : H^\infty_\alpha \to \mathcal{B}_\beta \) is bounded;

(b) The operator \(D^n_{\varphi,u} : H^\infty_{\alpha,0} \to \mathcal{B}_\beta \) is bounded;

(c) \(u\varphi \in \mathcal{B}_\beta \), \(u \in \mathcal{B}_\beta \),

\[
A := \sup_{w \in \mathbb{D}} \|D^n_{\varphi,u}f_{\varphi(w)}\|_{\mathcal{B}_\beta} < \infty \quad \text{and} \quad B := \sup_{w \in \mathbb{D}} \|D^n_{\varphi,u}g_{\varphi(w)}\|_{\mathcal{B}_\beta} < \infty;
\]

(d) \(M_1 := \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^\beta |u'(z)|}{(1 - |\varphi(z)|^2)^{\alpha+n}} < \infty \) \quad (2)

and \(M_2 := \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^\beta |\varphi'(z)|u(z)}{(1 - |\varphi(z)|^2)^{\alpha+n+1}} < \infty \) \quad (3)
Proof. (d) ⇒ (a). Suppose that (d) holds. For arbitrary z in \mathbb{D} and $f \in H^\infty_\alpha$, by Lemma 1 we have

$$
(1 - |z|^2)^\beta |(D^n_{\varphi,u}f)'(z)|
\leq (1 - |z|^2)^\beta |u'(z)||f^{(n)}(\varphi(z))| + (1 - |z|^2)^\beta |f^{(n+1)}(\varphi(z))||u(z)||\varphi'(z)|
\leq C(1 - |z|^2)^\beta |u'(z)||f||_{H^\infty_\alpha} + C(1 - |z|^2)^\beta |u(z)||\varphi'(z)||f||_{H^\infty_\alpha}
\leq C(M_1 + M_2)||f||_{H^\infty_\alpha}.
$$

(4)

Taking the supremum in (4) over \mathbb{D} and then using the condition in (d) we see that $D^n_{\varphi,u} : H^\infty_\alpha \to B^\beta$ is bounded.

(a) ⇒ (b). This implication is obvious.

(b) ⇒ (c). Assume $D^n_{\varphi,u} : H^\infty_{\alpha,0} \to B^\beta$ is bounded. Taking the functions z^n and z^{n+1} and using the boundedness of $D^n_{\varphi,u}$ we see that

$$
u \varphi \in B^\beta \quad \text{and} \quad u \in B^\beta.
$$

For each $a \in \mathbb{D}$, it is easy to check that $f_a, g_a \in H^\infty_{\alpha,0}$. Moreover $||f_a||_{H^\infty_\alpha}$ and $||g_a||_{H^\infty_\alpha}$ are bounded by constants independent of a. By the boundedness of $D^n_{\varphi,u} : H^\infty_{\alpha,0} \to B^\alpha$, we get

$$
\sup_{a \in \mathbb{D}} ||D^n_{\varphi,u}f(\varphi(a))||_{B^\beta} \leq ||D^n_{\varphi,u}|| \sup_{a \in \mathbb{D}} ||f(\varphi(a))||_{H^\infty_\alpha} \leq C||D^n_{\varphi,u}|| < \infty
$$

and

$$
\sup_{a \in \mathbb{D}} ||D^n_{\varphi,u}g(\varphi(a))||_{B^\beta} \leq ||D^n_{\varphi,u}|| \sup_{a \in \mathbb{D}} ||g(\varphi(a))||_{H^\infty_\alpha} \leq C||D^n_{\varphi,u}|| < \infty,
$$

as desired.

(c) ⇒ (d). Suppose that $u \varphi \in B^\beta$, $u \in B^\beta$, A and B are finite. A calculation shows that

$$
\begin{align*}
f_a^{(n)}(a) &= \prod_{j=1}^n (\alpha + j) \frac{\bar{a}^n}{(1 - |a|^2)^{\alpha+n}},
g_a^{(n)}(a) &= \prod_{j=2}^{n+1} (\alpha + j) \frac{\bar{a}^n}{(1 - |a|^2)^{\alpha+n}}.
\end{align*}
$$

(5)

From (5), for $w \in \mathbb{D}$, we have

$$
(D^n_{\varphi,u}f(\varphi(w))' = \prod_{j=1}^n (\alpha + j) \frac{u'(w)\varphi'(w)^n}{(1 - |\varphi(w)|^2)^{\alpha+n}}
+ \prod_{j=1}^{n+1} (\alpha + j) \frac{u(w)\varphi'(w)\varphi(w)^{n+1}}{1 - |\varphi(w)|^2}^{1+\alpha+n}.
$$

(6)
Therefore
\[
\frac{(1 - |w|^2)^\beta |u'(w)||\varphi(w)|^n}{(1 - |\varphi(w)|^2)^{\alpha+n}} \leq \frac{1}{\prod_{j=1}^{n} (\alpha + j)} + \frac{\alpha + n + 1}{(1 - |\varphi(w)|^2)^{1+\alpha+n}}
\]
\[
\leq \frac{\|D_{\alpha,u}\varphi(w)\|}{\prod_{j=1}^{n} (\alpha + j)} + \frac{\alpha + n + 1}{(1 - |\varphi(w)|^2)^{1+\alpha+n}}
\]
\leq \frac{A}{\prod_{j=1}^{n} (\alpha + j)} + \frac{\alpha + n}{(1 - |\varphi(w)|^2)^{1+\alpha+n}}. \quad (7)
\]

In addition,
\[
(D_{\alpha,u}\varphi(w))^n(w) = \prod_{j=2}^{n+1} (\alpha + j) \frac{u'(w)|\varphi(w)|^n}{(1 - |\varphi(w)|^2)^{\alpha+n}}
\]
\[
+ \prod_{j=2}^{n+1} (\alpha + j) \frac{u(w)|\varphi'(w)||\varphi(w)|^{n+1}}{(1 - |\varphi(w)|^2)^{1+\alpha+n}}. \quad (8)
\]

Therefore, by multiplying (6) by \(\alpha + n + 1\) and (8) by \(\alpha + 1\), then subtracting such obtained equalities and using the triangle inequality, we obtain
\[
\frac{|u(w)|\varphi'(w)||\varphi(w)|^{n+1}}{(1 - |\varphi(w)|^2)^{1+\alpha+n}} \leq \frac{\alpha + 1 + n}{\prod_{j=1}^{n+1} (\alpha + j)} \|D_{\alpha,u}\varphi(w)\|^n + \frac{\alpha + 1}{\prod_{j=1}^{n+1} (\alpha + j)} |(D_{\alpha,u}\varphi(w))^n'(w)|, \quad (9)
\]

which implies
\[
\frac{(1 - |w|^2)^\beta |u(w)|\varphi'(w)||\varphi(w)|^{n+1}}{(1 - |\varphi(w)|^2)^{1+\alpha+n}} \leq \frac{\alpha + 1 + n}{\prod_{j=1}^{n+1} (\alpha + j)} A + \frac{\alpha + 1}{\prod_{j=1}^{n+1} (\alpha + j)} B. \quad (10)
\]

From (7) and (10), we get
\[
\frac{(1 - |w|^2)^\beta |u'(w)||\varphi(w)|^n}{(1 - |\varphi(w)|^2)^{\alpha+n}} \leq \frac{\alpha + 2 + n}{\prod_{j=1}^{n} (\alpha + j)} A + \frac{\alpha + 1}{\prod_{j=1}^{n} (\alpha + j)} B. \quad (11)
\]

Fix \(r \in (0, 1)\). If \(|\varphi(w)| > r\), then from (10) we obtain
\[
\frac{(1 - |w|^2)^\beta |u(w)|\varphi'(w)|}{(1 - |\varphi(w)|^2)^{1+\alpha+n}} \leq \frac{1}{r^{n+1}} \left(\frac{\alpha + 1 + n}{\prod_{j=1}^{n+1} (\alpha + j)} A + \frac{\alpha + 1}{\prod_{j=1}^{n+1} (\alpha + j)} B \right). \quad (12)
\]

On the other hand, if \(|\varphi(w)| \leq r\), by the fact that
\[
(1 - |w|^2)^\beta |u(w)|\varphi'(w)| \leq \|u\|_{\tilde{\beta}} + \|u\|_{\tilde{\beta}},
\]

we get
\[
\frac{(1 - |w|^2)^\beta |u(w)\varphi'(w)|}{(1 - |\varphi(w)|^2)^{1+\alpha+n}} \leq \frac{1}{(1 - r^2)^{1+\alpha+n}} \left(\|u\varphi\|_{\mathcal{B}^\beta} + \|u\|_{\mathcal{B}^\beta} \right).
\] (13)

From (12) and (13) we see that M_2 is finite. Using similar arguments and (11) we can obtain that M_1 is finite as well. The proof of this theorem is finished. \[\square\]

Theorem 2. Let $u \in H(\mathbb{D})$, $0 < \alpha, \beta < \infty$, φ be an analytic self-map of \mathbb{D} and n be a nonnegative integer. Suppose that the operator $D_{n}^{\varphi,u} : H_{\alpha}^{\infty} \to \mathcal{B}^{\beta}$ is bounded, then the following statements are equivalent:

(a) The operator $D_{n}^{\varphi,u} : H_{\alpha}^{\infty} \to \mathcal{B}^{\beta}$ is compact;

(b) The operator $D_{n}^{\varphi,u} : H_{\alpha,0}^{\infty} \to \mathcal{B}^{\beta}$ is compact;

(c) \[
\lim_{|\varphi(w)| \to 1} \|D_{n}^{\varphi,u}f_{\varphi(w)}\|_{\mathcal{B}^{\beta}} = 0 \quad \text{and} \quad \lim_{|\varphi(w)| \to 1} \|D_{n}^{\varphi,u}g_{\varphi(w)}\|_{\mathcal{B}^{\beta}} = 0;
\]

(d) \[
\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^\beta |u(z)|}{(1 - |\varphi(z)|^2)^{\alpha+n}} = 0 \quad \text{and} \quad \lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^\beta |u(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^{1+\alpha+n}} = 0.
\]

Proof. (a) \implies (b). This implication is clear.

(b) \implies (c). Assume that $D_{n}^{\varphi,u} : H_{\alpha,0}^{\infty} \to \mathcal{B}^{\beta}$ is compact. Let $\{w_k\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{D} such that $\lim_{k \to \infty} |\varphi(w_k)| = 1$ (if such a sequence does not exist then the limits in (c) automatically hold). Since the sequences $\{f_{\varphi(w_k)}\}$ and $\{g_{\varphi(w_k)}\}$ are bounded in $H_{\alpha,0}^{\infty}$ and converge to 0 uniformly on compact subsets of \mathbb{D}, by Lemma 2, we get
\[
\|D_{n}^{\varphi,u}f_{\varphi(w_k)}\|_{\mathcal{B}^{\beta}} \to 0 \quad \text{and} \quad \|D_{n}^{\varphi,u}g_{\varphi(w_k)}\|_{\mathcal{B}^{\beta}} \to 0
\] (14) as $k \to \infty$, which means that (c) holds.

(c) \implies (d). Suppose that the limits in (c) are 0. Using the inequality (9), we get
\[
\frac{(1 - |w|^2)^\beta |u(w)\varphi'(w)|}{(1 - |\varphi(w)|^2)^{1+\alpha+n}} \leq \frac{(\alpha + 1+n)\|D_{n}^{\varphi,u}f_{\varphi(w)}\|_{\mathcal{B}^{\beta}} + (\alpha + 1)\|D_{n}^{\varphi,u}g_{\varphi(w)}\|_{\mathcal{B}^{\beta}}}{\prod_{j=1}^{n+1}(\alpha + j)|\varphi(w)|^{n+1}} \to 0
\] (15) as $|\varphi(w)| \to 1$. Moreover, using (7), we deduce
\[
\frac{(1 - |w|^2)^\beta |u'(w)|}{(1 - |\varphi(w)|^2)^{\alpha+n}} \leq \frac{\|D_{n}^{\varphi,u}f_{\varphi(w)}\|_{\mathcal{B}^{\beta}} + (\alpha + n + 1)(1 - |w|^2)^\beta |u(w)\varphi'(w)||\varphi(w)|}{\prod_{j=1}^{n}(\alpha + j)|\varphi(w)|^{n}} \to 0,
\] (16)
as $|\varphi(w)| \to 1$. The desired result follows.

(d) \implies (a). Assume that (d) holds. By (d), we have that for any $\varepsilon > 0$, there is a constant δ, $0 < \delta < 1$, such that

\[
\frac{(1 - |z|^2)^{\beta} |u'(z)|}{(1 - |\varphi(z)|^2)^{\alpha+n}} < \varepsilon \quad \text{and} \quad \frac{(1 - |z|^2)^{\beta} |u(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^{\alpha+1+n}} < \varepsilon,
\]

whenever $\delta < |\varphi(z)| < 1$.

Let $(f_k)_{k \in \mathbb{N}}$ be a sequence in H^∞_α with $\sup_{k \in \mathbb{N}} \|f_k\|_{H^\infty_\alpha} \leq M$ and $f_k \to 0$ uniformly on compact subsets of \mathbb{D} as $k \to \infty$. In light of Lemma 2, we only need to show that $\|D_{\varphi,u}^n f_k\|_{\mathcal{B}_\beta} \to 0$ as $k \to \infty$. Using (17), for $|\varphi(w)| > r$, we have

\[
(1 - |w|^2)^{\beta} \|(D_{\varphi,u}^n f_k)'(w)\| \\
\leq (1 - |w|^2)^{\beta} |u'(w)f_k(n)\varphi(w)| + (1 - |w|^2)^{\beta} |u(w)f_k(n+1)\varphi(w)\varphi'(w)| \\
\leq C\|f_k\|_{H^\infty_\alpha} \left(\frac{(1 - |w|^2)^{\beta} |u'(w)|}{(1 - |\varphi(w)|^2)^{\alpha+n}} + \frac{(1 - |w|^2)^{\beta} |u(w)\varphi'(w)|}{(1 - |\varphi(w)|^2)^{1+\alpha+n}} \right) < 2MC\varepsilon.
\]

By Cauchy’s estimate, if f_k is a sequence which converges on compact subset of \mathbb{D} to zero, then the sequence $f_k(n)$ also converges on compact subset of \mathbb{D} to zero as $k \to \infty$. Hence, for $|\varphi(w)| \leq r$, we have

\[
(1 - |w|^2)^{\beta} \|(D_{\varphi,u}^n f_k)'(w)\| < \varepsilon, \quad \text{as} \quad k \to \infty.
\]

Since $|u(0)f_k(n)(\varphi(0))| \to 0$ as $k \to \infty$, we obtain that

\[
\|D_{\varphi,u}^n f_k\|_{\mathcal{B}_\beta} = |u(0)f_k(n)(\varphi(0))| + \sup_{w \in \mathbb{D}} (1 - |w|^2)^{\beta} \|(D_{\varphi,u}^n f_k)'(w)\| \\
= \sup_{|\varphi(w)| > r} (1 - |w|^2)^{\beta} \|(D_{\varphi,u}^n f_k)'(w)\| + \sup_{|\varphi(w)| \leq r} (1 - |w|^2)^{\beta} \|(D_{\varphi,u}^n f_k)'(w)\| \to 0,
\]

as $k \to \infty$. Hence the operator $D_{\varphi,u}^n : H^\infty_\alpha \to \mathcal{B}_\beta$ is compact by Lemma 2. The proof of this theorem is finished.

\[\square\]

Acknowledgments

The author is supported by Guangdong Natural Science Foundation (No. 10451401501004305), Foundation for Distinguished Young Talents in Higher Education of Guangdong (No. LYM11117) and National Natural Science Foundation of China (No. 11001107).
REFERENCES

(Received March 19, 2012)