SHARP BOUNDS FOR SEIFFERT MEAN IN TERMS OF WEIGHTED POWER MEANS OF ARITHMETIC MEAN AND GEOMETRIC MEAN

ZHENG-HANG YANG

(Communicated by I. Perić)

Abstract. For \(a, b > 0 \) with \(a \neq b \), let \(P = (a - b) / (4 \arctan \sqrt{a/b} - \pi) \), \(A = (a + b) / 2 \), \(G = \sqrt{ab} \) denote the Seiffert mean, arithmetic mean, geometric mean of \(a \) and \(b \), respectively. In this paper, we present new sharp bounds for Seiffert \(P \) in terms of weighted power means of arithmetic mean \(A \) and geometric mean \(G \):

\[
\left(\frac{2}{3} A^{p_1} + \frac{1}{3} G^{p_1} \right)^{1/p_1} < P < \left(\frac{2}{3} A^{p_2} + \frac{1}{3} G^{p_2} \right)^{1/p_2},
\]

where \(p_1 = 4/5 \) and \(p_2 = \log_{\pi/2} (3/2) \) are the best possible constants. Moreover, our sharp bounds for \(P \) are compared with other known ones, which yields a chain of inequalities involving Seiffert mean \(P \).

1. Introduction and main results

Throughout the paper, we assume that \(a, b > 0 \) with \(a \neq b \).

Let \(w \in (0, 1) \). The \(r \)-th weighted power mean of positive numbers \(a, b > 0 \) is defined as

\[
M_r(a, b; w) := (wa^r + (1 - w)b^r)^{1/r} \quad \text{if } r \neq 0 \quad \text{and} \quad M_0(a, b; w) = a^w b^{1-w}. \tag{1.1}
\]

It is well-known that \(M_r(a, b; w) \) is increasing with respect to \(r \) on \(\mathbb{R} \) (see [1]). In particular, \(M_r(a, b) := M_r(a, b; 1/2) \) is the standard power mean. As special cases, the arithmetic mean and geometric mean are \(A = A(a, b) = M_1(a, b) \) and \(G = G(a, b) = M_0(a, b) \), respectively. Let \(L = (a - b) / (\log a - \log b) \), \(I = e^{-1} (b^b / a^a) ^{1/(b-a)} \) denote the logarithmic mean and identric mean, respectively.

The Seiffert’s mean defined by

\[
P = P(a, b) = \frac{a - b}{4 \arctan \sqrt{a/b} - \pi} \tag{1.2}
\]
or

\[
P = P(a, b) = \frac{a - b}{2 \arcsin \frac{a-b}{a+b}} \tag{1.3}
\]

Keywords and phrases: Seiffert mean, arithmetic mean, geometric mean, power mean, sharp bound.

This paper is in final form and no version of it will be submitted for publication elsewhere.
was introduced in [17], it has attracted many scholars’ attention, and the inequalities involving \(P(a,b) \) have been the subject of intensive research. In [18], the author proved that
\[
L < P < I
\]
(1.4)
and further showed that [19]:
\[
P > \frac{3AG}{2A + G},
\]
(1.5)
\[
P > \frac{AG}{L},
\]
(1.6)
\[
\frac{2}{\pi}A < P < A.
\]
(1.7)

Jagers [9] and Hästo [5] gave bounds for \(P \) in terms of power means:
\[
M_{1/2} < P < M_{2/3},
\]
(1.8)
\[
\frac{2\sqrt{2}}{\pi}M_{2/3} < P < M_{2/3},
\]
(1.9)
respectively. Later, Hästo obtained a sharp lower bound for \(P \) [6]:
\[
P > M_{\log_{4/5}2}.
\]
(1.10)

In 2001, Sándor [16] established the following
\[
\frac{A + G}{2} < P < \sqrt{\frac{A + G}{2}A},
\]
(1.11)
\[
A^{2/3}G^{1/3} < P < \frac{2A + G}{3}.
\]
(1.12)

The more results can be found in [4], [7], [12], [14], [20], [21].

The main purpose of this paper is to strengthen the inequalities (1.12), that is, to determine the best \(p \in (0,1) \) such that the inequality
\[
P > \left(\frac{2}{3}A^p + \frac{1}{3}G^p \right)^{1/p}
\]
(1.13)
or its reverse inequality holds. Our main results are the following

Theorem 1. The inequality (1.13) holds for all \(a,b > 0 \) with \(a \neq b \) if and only if \(p \leq p_1 = 4/5 \). Moreover, we have
\[
\alpha_1 \left(\frac{2}{3}A^{4/5} + \frac{1}{3}G^{4/5} \right)^{5/4} < P < \alpha_2 \left(\frac{2}{3}A^{4/5} + \frac{1}{3}G^{4/5} \right)^{5/4},
\]
(1.14)
where \(\alpha_1 = 1 \) and \(\alpha_2 = 3\sqrt{24}/(2\pi) = 1.0568... \) are the best possible constants.
Theorem 2. The inequality (1.13) is reversed for all $a, b > 0$ with $a \neq b$ if and only if $p \geq p_2 = \log_{\pi/2} (3/2) = 0.89788$. Moreover, we have
\[
\beta_1 \left(\frac{2}{3}A^{p_2} + \frac{1}{3}G^{p_2} \right)^{1/p_2} < P < \beta_2 \left(\frac{2}{3}A^{p_2} + \frac{1}{3}G^{p_2} \right)^{1/p_2},
\]
where $\beta_1 \approx 0.99237$ and $\beta_2 = 1$ are the best possible constants.

Due to (1.3) and with $x = \arcsin \frac{a-b}{a+b} \in (0, \pi/2)$, we have
\[
\frac{P}{A} = \frac{\sin x}{x}, \quad \frac{G}{A} = \cos x.
\]
Thus Theorems 1 and 2 can be changed as the following two equivalent theorems.

Theorem A. The inequality
\[
\frac{\sin x}{x} > \left(\frac{2}{3} + \frac{1}{3} \cos x \right)^{1/p}
\]
holds for $x \in (0, \pi/2)$ if and only if $p \leq p_1 = 4/5$. Moreover, we have
\[
\alpha_1 \left(\frac{2}{3} + \frac{1}{3} \cos x \right)^{4/5} < \frac{\sin x}{x} < \alpha_2 \left(\frac{2}{3} + \frac{1}{3} \cos x \right)^{4/5},
\]
where $\alpha_1 = 1$ and $\alpha_2 = 3\sqrt{24}/(2\pi) = 1.0568...$ are the best possible constants.

Theorem B. The inequality (1.16) is reversed for $x \in (0, \pi/2)$ if and only if $p \geq p_2 = \log_{\pi/2} (3/2) = 0.89788$. Moreover, we have
\[
\beta_1 \left(\frac{2}{3} + \frac{1}{3} \cos x \right)^{p_2} < \frac{\sin x}{x} < \beta_2 \left(\frac{2}{3} + \frac{1}{3} \cos x \right)^{p_2},
\]
where $\beta_1 \approx 0.99237$ and $\beta_2 = 1$ are the best possible constants.

Remark 1. Cusa-Huygens inequality [8] refers to
\[
\frac{\sin x}{x} < \frac{2}{3} + \frac{1}{3} \cos x
\]
holds for $x \in (0, \pi/2)$. It is obvious that our Theorem A and B are improvements of (1.19). Other improvements and refinements for Cusa-Huygens inequality can be found in [2], [10], [13], [14], [15].

A hyperbolic counterpart of the inequality (1.16) is due to Zhu [22, Theorem 1.1].

2. Lemmas

Lemma 1. Let $M(a, b)$ be a homogeneous mean of positive arguments a and b. Then
\[
M(a, b) = \sqrt{ab} M(e^t, e^{-t}),
\]
where $t = \frac{1}{2} \log (a/b)$.

LEMMA 2. Let the function \(t \mapsto F_p(t) \) be defined on \((0, \infty)\) by
\[
F_p(t) = \begin{cases}
\log \frac{2 \sinh t}{4 \arctan e^t - \pi} - \frac{1}{p} \log \left(\frac{2}{3} \cosh^p t + \frac{1}{2} \right) & \text{if } p \neq 0, \\
\log \frac{2 \sinh t}{4 \arctan e^t - \pi} - \cosh^{2/3} t & \text{if } p = 0.
\end{cases}
\]
(2.1)

Then we have
\[
\lim_{t \to 0^+} \frac{F_p(t)}{t^4} = \frac{1}{45} - \frac{1}{36} p
\]
(2.2)
\[
F_p(\infty) = \lim_{t \to \infty} F_p(t) = \begin{cases}
\frac{1}{p} \log \frac{3}{2} - \log \frac{5}{2} & \text{if } p > 0, \\
\infty & \text{if } p \leq 0.
\end{cases}
\]
(2.3)

Proof. Using power series expansion we have
\[
F_p(t) = -\frac{5p - 4}{180} t^4 + O(t^6),
\]
which yields (2.2).

To obtain (2.3), we write \(F_p(t) \) as
\[
F_p(t) = \log 2 - \log \left(4 \arctan e^t - \pi \right) - \frac{1}{p} \log \left(\frac{2}{3} \left(\frac{\cosh t}{\sinh t} \right)^p + \frac{1}{3} \left(\frac{1}{\sinh t} \right)^p \right),
\]
from which (2.3) easily follows.

The proof ends. \(\square \)

LEMMA 3. Let the function \(t \mapsto F_p(t) \) be defined on \((0, \infty)\) by (2.1). Then \(F_p \) is strictly increasing on \((0, \infty)\) if \(p \in (0, 4/5] \).

Proof. Differentiation and arrangement yield
\[
F'_p(t) = \frac{2 \cosh^p t + \cosh^2 t}{(\cosh t \sinh t) \left(2 \cosh^p t + 1 \right) \left(4 \arctan e^t - \pi \right)} f_1(t),
\]
(2.4)
where
\[
f_1(t) = 4 \arctan e^t - \pi - 2 \sinh t + \frac{2 \sinh^3 t}{\cosh^2 t + 2 \cosh^p t}.
\]
(2.5)

Differentiation again and factoring lead to
\[
f'_1(t) = \frac{4 \sinh^2 t}{(\cosh^3 t) \left(1 + 2 \cosh^{p-2} t \right)^2} f_2(\cosh t),
\]
(2.6)
here
\[
f_2(x) = (1 - p)x^p - 2x^{2p-2} + px^{p-2} + 1, \quad x \in (1, \infty).
\]
(2.7)
Simple computation reveals that
\[x^{3-p} f_2' (x) = p (1-p)x^2 + 4(1-p)x^p + p(p-2) := f_3 (x), \]
(2.8)
\[f_3' (x) = 2p (1-p) (x+2x^{p-1}). \]
(2.9)
If \(p \in (0, 4/5] \), then
\[f_3' (x) = 2p (1-p) (x+2x^{p-1}) > 0 \]
for all \(x > 1 \), that is, \(f_3 \) is increasing on \((1, \infty)\), it is derived that
\[f_3 (x) > f_3 (1) = 4 - 5p > 0, \]
which together with (2.8) leads to \(f_2' (x) > 0 \), that is, \(f_2 \) is increasing on \((1, \infty)\). Hence, we have
\[f_2 (x) > f_2 (1) = 0, \]
which in conjunction with (2.6) implies that \(f_1' (t) > 0 \) for all \(t > 0 \), and then, \(f_1 (t) > f_1 (0) = 0 \). Thus it is obtained that \(F_p' (t) > 0 \), that is, the desired result.

The proof is completed.

From the proof of Lemma 3 it is obtained that
\[f_1 (t) = 4 \arctan e^t - \pi - 2 \sinh t + \frac{2 \sinh^3 t}{\cosh^2 t + 2 \cosh^p t} > 0, \]
which can be written as
\[\frac{2 \sinh t}{4 \arctan e^t - \pi} < \frac{\cosh^2 t + 2 \cosh^p t}{1 + 2 \cosh^p t}, \]
(2.10)
where \(p \in (0, 4/5] \). It is easy to verify that
\[\frac{d}{dp} \frac{\cosh^2 t + 2 \cosh^p t}{1 + 2 \cosh^p t} = -\cosh^p t \frac{\log (\cosh t)}{(2 \cosh^p t + 1)^2} (\cosh 2t - 1) < 0, \]
that is, the function \(p \mapsto \frac{\cosh^2 t + 2 \cosh^p t}{1 + 2 \cosh^p t} \) is decreasing on \(\mathbb{R} \). By Lemma 1 the result can be stated as a corollary of Lemma 3.

Corollary 1. We have
\[P < \frac{A^2 + 2A^p G^{2-p}}{G^2 + 2A^p G^{2-p}} G, \]
(2.11)
where the right hand of (2.11) decreases as \(p \) increases on \((-\infty, 4/5]\). Particularly, putting \(p = 4/5, 0, ..., \rightarrow -\infty \) we have
\[P < \frac{A^{4/5} G^{-1/5} A^{6/5} + 2G^{6/5}}{2A^{4/5} + G^{4/5}} < \frac{A^{2} + 2G^{2}}{3G} < \cdots < \frac{A^{2}}{G}. \]
(2.12)
Lemma 4. Let $p \in (4/5, 1)$ and the function $t \mapsto F_p(t)$ be defined on $(0, \infty)$ by \eqref{2.1}. Then there is a unique number $t_3 \in (0, \infty)$ to satisfy $f_1(t_3) = 0$ such that F_p is decreasing on $(0, t_3)$ and increasing on (t_3, ∞).

Proof. We start with \eqref{2.9} to prove this lemma. If $p \in (4/5, 1)$ then

$$f_3'(x) = 2p(1-p)(x + 2x^{p-1}) > 0,$$

and note that

$$f_3(1) = 4 - 5p < 0 \quad \text{and} \quad f_3(\infty) = \text{sgn}(p(1-p)) > 0,$$

it is seen that there is a unique number $x_1 \in (1, \infty)$ such that $f_3(x) < 0$ for $x \in (1, x_1)$ and $f_3(x) > 0$ for $x \in (x_1, \infty)$. From \eqref{2.8} it is deduced that f_2 is decreasing on $(1, x_1)$ and increasing on (x_1, ∞). And then, $f_2(x) < f_2(1) = 0$ for $x \in (1, x_1)$, but $f_2(\infty) = \text{sgn}(1-p)$, it follows that there is a unique number $x_2 \in (x_1, \infty)$ such that $f_2(x) < 0$ for $x \in (1, x_2)$ and $f_2(x) > 0$ for $x \in (x_2, \infty)$. Due to \eqref{2.6} this implies that there exits a unique $t_2 \in (0, \infty)$ to satisfy $\cosh t_2 = x_2$ so that the function $t \mapsto f_1(t)$ is decreasing on $(0, t_2)$ and increasing on (t_2, ∞). Hence, we have

$$f_1(t) < f_1(0) = 0 \text{ if } t \in (0, t_2).$$

However,

$$\lim_{t \to \infty} f_1(t) = \frac{\pi}{4} > 0,$$

thus there is a unique number $t_3 \in (t_2, \infty)$ to satisfy $f_1(t_3) = 0$ such that $f_1(t) < 0$ if $t \in (0, t_3)$ and $f_1(t) > 0$ if $t \in (t_3, \infty)$, which from \eqref{2.4} reveals that the function $t \mapsto F_p(t)$ is decreasing on $(0, t_3)$ and increasing on (t_3, ∞).

This completes the proof. \hfill \square

3. Proofs of Main Results

Proof of Theorem 1. By symmetry, we assume that $b > a > 0$. We have

$$P(e^t, e^{-t}) = \frac{2 \sinh t}{4 \arctan e^t - \pi}, \quad A(e^t, e^{-t}) = \cosh t, \quad G(e^t, e^{-t}) = 1,$$

where $t = \frac{1}{2} \log(b/a) > 0$. From Lemma 1, in order to prove that inequality \eqref{1.13} holds if and only if $p \leq 4/5$, it is enough to show that inequalities

$$\log \frac{2 \sinh t}{4 \arctan e^t - \pi} > \frac{1}{p} \log \left(\frac{2}{3} (\cosh t)^p + \frac{1}{3} \right),$$

that is, $F_p(t) > 0$ holds if and only if $p \leq 4/5$, where $F_p(t)$ is defined by \eqref{2.4}.

Necessity. If $F_p(t) > 0$ holds for all $t > 0$, then by Lemma 2 we have

$$\left\{ \begin{array}{l}
\lim_{t \to +0} \frac{F_p(t)}{t^p} = \frac{1}{45} - \frac{1}{36} p > 0, \\
\lim_{t \to \infty} F_p(t) = \frac{1}{p} \log \frac{3}{2} - \log \frac{4}{3} \
\end{array} \right. \geq 0 \text{ if } p > 0$$
or
\[
\begin{cases}
\lim_{t \to 0^+} \frac{F_p(t)}{t^4} = \frac{1}{45} - \frac{1}{36}p \geq 0, \\
\lim_{t \to \infty} F_p(t) = \infty \text{ if } p \leq 0.
\end{cases}
\]

Solving the inequalities for \(p \) yields \(p \leq 4/5 \).

Sufficiency. Suppose that \(p \leq 4/5 \). Since the function

\[
p \mapsto \frac{1}{p} \log \left(\frac{2}{3} (\cosh t)^p + \frac{1}{3} \right)
\]

is clearly increasing, so the function \(p \mapsto F_p(t) \) is decreasing, thus it is suffices to show that

\[F_p(t) > 0 \text{ for all } t > 0 \text{ if } p = p_1 = 4/5. \]

By Lemma 3, we see that \(F_{p_1} \) is strictly increasing on \((0, \infty)\). It follows that

\[
0 = F_{p_1}(0) < F_{p_1}(t) < F_{p_1}(\infty) = \frac{5}{4} \log \frac{3}{2} - \log \frac{\pi}{2},
\]

which proves the sufficiency and inequalities (1.14). Clearly,

\[
\alpha_1 = \exp(0) = 1 \text{ and } \alpha_2 = \exp \left(\frac{5}{4} \log \frac{3}{2} - \log \frac{\pi}{2} \right) = 3^{\frac{4}{3}} \frac{\sqrt{24}}{(2\pi)}
\]

are the best possible constants.

Thus the proof of Theorem 1 is finished. \(\square \)

Proof of Theorem 2. Clearly, the reverse inequality of (1.13) is equivalent to \(F_p(t) < 0 \) for \(t > 0 \). Now we show that \(F_p(t) < 0 \) holds for all \(t > 0 \) if and only if \(p \geq p_2 = (\log 3 - \log 2) / (\log \pi - \log 2) \).

Necessity. The condition \(p \geq p_2 \) is necessary. Indeed, if \(F_p(t) < 0 \) holds for all \(t > 0 \), then we have

\[
\lim_{t \to 0^+} \frac{F_p(t)}{t^4} = \frac{1}{45} - \frac{1}{36}p \leq 0,
\]

\[
\lim_{t \to \infty} F_p(t) = \frac{1}{p} \log \frac{3}{2} - \log \frac{\pi}{2} \leq 0 \text{ if } p > 0,
\]

which leads to \(p \geq \log_{\pi/2} (3/2) = p_2 \).

Sufficiency. The condition \(p \geq p_2 \) is also sufficient. As mentioned in proof of Theorem 1, the function \(p \mapsto F_p(t) \) is decreasing, thus it is suffices to show that \(F_p(t) < 0 \) for all \(t > 0 \) if \(p = p_2 \).

Lemma 4 reveals that for \(p \in (4/5, 1) \) there is a unique number \(t_3 \in (t_2, \infty) \) to satisfy

\[
f_1(t) = \arctan e^t - \frac{2 \sinh t + 4 \cosh^p t \sinh t + \pi \cosh^2 t + 2 \pi \cosh^p t}{8 \cosh^p t + 4 \cosh^2 t} = 0 \tag{3.1}
\]
such that F_p is decreasing on $(0,t_3)$ and increasing on (t_3,∞). It is acquired that for $p_2 = \log_{\pi/2} (3/2) \in (4/5, 1)$

$$F_{p_2}(t_3) < F_{p_2}(t) < F_{p_2}(0) = 0 \text{ if } t \in (0,t_3),$$

$$F_{p_2}(t_3) < F_{p_2}(t) < F_{p_2}(\infty) = 0 \text{ if } t \in (t_3,\infty),$$

that is,

$$F_{p_2}(t_3) < \log \frac{2 \sinh t}{4 \arctan \frac{\pi}{2} - \pi} \left(\frac{2}{3} (\cosh t)^{p_2} + \frac{1}{3} \right)^{1/p_2} < 0,$$

which proves the sufficiency and inequalities (1.15).

Furthermore, for $p = p_2 = \log_{\pi/2} (3/2)$, solving the equation (3.1) for t by mathematical computation software yields $t_3 \approx 2.6630245$, and then

$$\beta_1 = \exp (F_{p_2}(t_3)) \approx 0.99237 \text{ and } \beta_2 = \exp (0) = 1.$$

Clearly, $\beta_1 \approx 0.99237$ and $\beta_2 = 1$ are the best possible constants.

This completes the proof of Theorem 2. □

4. Comparisons of certain bounds for P

It is mentioned in the Introduction that there has many bounds for P, some comparisons of them can refer to [7]. In this section, the bounds in the form of $M_{r_1} (A, G; 2/3)$ will be compared with other ones in the form of $M_{r_2} (a, b; 1/2)$, where $M_r (a, b; w)$ is defined by (1.1).

Lemma 5. The inequalities

$$\left(\frac{2}{3} A^p + \frac{1}{3} G^p \right)^{1/p} < \left(\frac{a^{2/3} + b^{2/3}}{2} \right)^{3/2} < \left(\frac{2}{3} A^q + \frac{1}{3} G^q \right)^{1/q} \tag{4.1}$$

hold if and only if $p \leq 10/9$ and $q \geq \log_2 (9/4)$.

Proof. By Lemma 1, in order to prove this lemma, it is enough to prove that for $t > 0$ inequalities

$$\frac{1}{p} \log \left(\frac{2}{3} (\cosh t)^p + \frac{1}{3} \right) < \frac{3}{2} \log \cosh \frac{2}{3} t < \frac{1}{q} \log \left(\frac{2}{3} (\cosh t)^q + \frac{1}{3} \right) \tag{4.2}$$

hold if and only if $p \leq 10/9$ and $q \geq \log_2 (9/4)$.

Define that

$$G_p(t) := \frac{1}{p} \log \left(\frac{2}{3} (\cosh t)^p + \frac{1}{3} \right) - \frac{3}{2} \log \cosh \frac{2}{3} t. \tag{4.3}$$
Then we easily get
\[
\lim_{t \to 0^+} \frac{G_p(t)}{t^4} = \frac{1}{36} p - \frac{5}{162},
\]
(4.4)

\[
G_p(\infty) = \begin{cases}
\frac{1}{2} \log 2 - \frac{1}{p} \log \frac{3}{2} & \text{if } p > 0, \\
-\infty & \text{if } p \leq 0.
\end{cases}
\]
(4.5)

On the other hand, differentiation yields
\[
G_p'(t) = \frac{(2 \sinh \frac{1}{2}t \cosh t) \log \cosh t}{(\cosh \frac{3}{2}t \cosh t) (2 \cosh^p t + 1)} L \left(\cosh^{p-1} t, \cosh \frac{1}{3} t \right) \times g_1(t),
\]
(4.6)

where
\[
g_1(t) = p - 1 - \frac{\log \cosh \frac{1}{2} t}{\log \cosh t}
\]
(4.7)

and \(L(x, y) \) is the logarithmic mean of positive numbers \(x \) and \(y \).

Differentiation again leads to
\[
\frac{\frac{3}{2} (\cosh \frac{1}{2} t \cosh t) \log^2 (\cosh t)}{3 \cosh \frac{1}{2} t \sinh t} g_1'(t) = \log (\cosh \frac{1}{2} t) - \frac{\sinh \frac{1}{2} t \cosh t}{3 \cosh \frac{1}{2} t \sinh t} \log (\cosh t) := g_2'(t),
\]
(4.8)

\[
g_2'(t) = \frac{-2}{9} \frac{\sinh^3 \frac{2}{3} t}{\cosh^2 \frac{1}{2} t \sinh^2 t} \log (\cosh t) < 0
\]
(4.9)

for \(t > 0 \). It is acquired that \(g_2(t) < g_2(0) = 0 \), which implies that \(g_1 \) is decreasing on \((0, \infty)\).

Now we are in a position to prove the desired results.

(i) We prove the first inequality of (4.2) holds if and only if \(p \leq 10/9 \). In fact, if the first inequality of (4.2) holds, that is, \(G_p(t) < 0 \) for all \(t > 0 \), then by (4.4) and (4.5) we have

\[
\begin{align*}
\lim_{t \to 0^+} \frac{G_p(t)}{t^4} &= \frac{1}{36} p - \frac{5}{162} \leq 0, \\
G_p(\infty) &= \frac{1}{2} \log 2 - \frac{1}{p} \log \frac{3}{2} \leq 0 \quad \text{if } p > 0
\end{align*}
\]

or

\[
\begin{align*}
\lim_{t \to 0^+} \frac{G_p(t)}{t^4} &= \frac{1}{36} p - \frac{5}{162} \leq 0, \\
G_p(\infty) &= -\infty \quad \text{if } p \leq 0.
\end{align*}
\]

Solving the above inequalities leads to \(p \leq 10/9 \).

Conversely, if \(p \leq 10/9 \), then since \(g_1 \) is decreasing on \((0, \infty)\), it is obtained that

\[
g_1(t) < g_1(0^+) = \lim_{t \to 0^+} \left(p - 1 - \frac{\log \cosh \frac{1}{2} t}{\log \cosh t} \right) = p - \frac{10}{9} \leq 0,
\]
which in combination with (4.6) reveals that \(G'_p(t) < 0 \). Thus we conclude that \(G_p(t) < G_p(0) = 0 \), that is, the first inequality of (4.2) holds.

(ii) Next we show that the second inequality of (4.2) holds if and only if \(p \geq \log_2(9/4) \).

If the second inequality of (4.2) holds, that is, \(G_p(t) > 0 \) for all \(t > 0 \), then by (4.4) and (4.5) we have

\[
\begin{aligned}
\lim_{t \to 0^+} \frac{G_p(t)}{t^4} &= \frac{1}{36} p - \frac{5}{162} \geq 0, \\
G_p(\infty) &= \frac{1}{2} \log 2 - \frac{1}{p} \log \frac{3}{2} \geq 0 \text{ if } p > 0,
\end{aligned}
\]

which yields \(p \geq \log_2(9/4) \).

Conversely, if \(p \geq \log_2(9/4) \), since the function \(p \to G_p(t) \) is increasing, then it suffices to show that \(G_p(t) > 0 \) for all \(t > 0 \) if \(p = \log_2(9/4) \). By the monotonicity of the function \(g_1 \) and the fact that

\[
g_1(0^+) = \lim_{t \to 0^+} \left(\log_2 \frac{9}{4} - 1 - \frac{\log \cosh \frac{1}{2} t}{\log \cosh t} \right) = \log_2 \frac{9}{4} - \frac{10}{9} > 0,
\]

\[
g_1(\infty) = \lim_{t \to \infty} \left(\log_2 \frac{9}{4} - 1 - \frac{\log \cosh \frac{1}{2} t}{\log \cosh t} \right) = \log_2 \frac{9}{4} - \frac{4}{3} < 0,
\]

it is seen that there is a unique number \(t_0 \in (0, \infty) \) such that \(g_1(t) > 0 \) if \(t \in (0, t_0) \) and \(g_1(t) < 0 \) if \(t \in (t_0, \infty) \), which together with (4.6) indicates that the function \(t \to G_p(t) \) is increasing on \((0, t_0)\) and decreasing on \((t_0, \infty)\). Therefore, we conclude that

\[
G_p(t) > G_p(0) = 0 \text{ for } t \in (0, t_0),
\]

\[
G_p(t) > G_p(\infty) = 0 \text{ for } t \in (t_0, \infty),
\]

which is the desired result. Thus the proof ends. \(\square \)

Lemma 6. Let \(r_0 = (\log 2) / \log \pi \). Then inequalities

\[
\left(\frac{3}{4} A^p + \frac{1}{4} G^p \right)^{1/p} > \left(\frac{a^{r_0} + b^{r_0}}{2} \right)^{1/r_0}
\]

hold if and only if \(p \geq \log_{\pi/2}(3/2) \), and the two sides of (4.10) are not comparable for all \(a, b > 0 \) with \(a \neq b \) if \(p < \log_{\pi/2}(3/2) \).

Proof. From (1.10) and Theorem 2 it follows that (4.10) holds if \(p \geq \log_{\pi/2}(3/2) \), that is, the condition \(p \geq \log_{\pi/2}(3/2) \) is sufficient to (4.10) holds for all \(a, b > 0 \) with \(a \neq b \).
We now show that the condition \(p \geq \log_{\pi/2}(3/2) \) is necessary. Indeed, by symmetry of \(a \) and \(b \), we assume that \(b > a \) and let \(x = a/b \in (0,1) \). Then inequality (4.10) is equivalent with

\[
U_p(x) := \frac{1}{p} \log \left(\frac{2}{3} \left(\frac{x+1}{2} \right)^{p} + \frac{1}{3} (\sqrt{x})^p \right) - \frac{1}{r_0} \log \left(\frac{x^{r_0} + 1}{2} \right) > 0,
\]

where \(x \in (0,1) \).

If (4.10) holds for all \(a,b > 0 \) with \(a \neq b \), then

\[
U_p(0^+) = \begin{cases} \frac{1}{p} \log \frac{2}{3} - \log 2 + \frac{1}{r_0} \log 2 \text{ if } p > 0 \\ -\infty \text{ if } p \leq 0 \end{cases}
\]

has to be nonnegative, which leads to \(p \geq \log_{\pi/2}(3/2) \). This completes the proof of sufficiency.

Next we show that the two sides of (4.10) are not comparable for all \(a,b > 0 \) with \(a \neq b \) if \(p < \log_{\pi/2}(3/2) \). Clearly, \(U_p(0^+) < 0 \) and

\[
\lim_{x \to 1^-} \frac{U_p(x)}{(x-1)^2} = \frac{1}{12} - \frac{1}{8} r_0 = \frac{2 \log \pi - 3 \log 2}{24 \log \pi} > 0.
\]

From this it is seen that there exits \(x_1,x_2 \in (0,1) \) such that \(U_p(x) < 0 \) for \(x \in (0,x_1) \) and \(U_p(x) > 0 \) for \(x \in (x_2,1) \), that is, the sign of \(U_p(x) \) is not a constant. Thus the proof is completed. \(\square \)

Lemma 7. The inequality

\[
\left(\frac{2}{3}A^p + \frac{1}{3}G^p \right)^{1/p} > \left(\frac{a^{1/2} + b^{1/2}}{2} \right)^2
\]

holds if and only if \(p \geq \log_2 3 - 1 = 0.58496... \), and the two sides of (4.11) are not comparable for all \(a,b > 0 \) with \(a \neq b \) if \(p < \log_2 3 - 1 \).

Proof. Since the right hand of (4.11) can be written as \((A + G)/2 \), then the inequality (4.11) is equivalent with

\[
V_p(x) = \frac{1}{p} \log \left(\frac{2}{3} x^p + \frac{1}{3} \right) - \log \left(\frac{1}{2} x + \frac{1}{2} \right) > 0,
\]

where \(x = A/G > 1 \).

If \(V_p(x) > 0 \) for all \(x > 1 \) then \(p > 0 \). If not, then

\[
\lim_{x \to \infty} V_p(x) = -\infty \text{ if } p \leq 0,
\]

which yields a contradiction. Thus we get

\[
V_p(\infty) = \lim_{x \to \infty} V_p(x) = \frac{1}{p} \log \frac{2}{3} - \log \frac{1}{2} \geq 0 \text{ if } p > 0,
\]
which yields \(p \geq \log_2 3 - 1 \).

Conversely, if \(p \geq \log_2 3 - 1 \), then since the function \(p \mapsto V_p(x) \) is increasing, we need to prove \(V_p(x) > 0 \) for all \(x > 1 \).

Differentiation leads to

\[
V'_p(x) = \frac{-x^p}{x(x+1)(2x^p+1)}(x^{1-p} - 2),
\]

which indicates that there is a unique number \(x_0 = 2^{1/(1-p)} \) such that \(V'_p(x) > 0 \) if \(x \in (1,x_0) \) and \(V'_p(x) < 0 \) if \(x \in (x_0,\infty) \). Thus we conclude that

\[
V_p(x) > V_p(1) = 0 \quad \text{if} \quad x \in (1,x_0) \quad \text{and} \quad V_p(x) > V_p(\infty) \geq 0 \quad \text{if} \quad x \in (x_0,\infty),
\]

that is, the desired result.

We now illustrate that the two sides of (4.11) are not comparable for all \(a,b > 0 \) with \(a \neq b \) if \(p < \log_2 3 - 1 \). In fact, if \(p < \log_2 3 - 1 \), then via (4.12) and (4.13) it is easily seen that \(V_p(\infty) < 0 \). On the other hand, it is easy to derive

\[
\lim_{x \to 1^+} \frac{V_p(x)}{x-1} = \frac{1}{6} > 0.
\]

Consequently, there exits \(x_1,x_2 \in (1,\infty) \) such that \(V_p(x) > 0 \) for \(x \in (1,x_1) \) and \(V_p(x) < 0 \) for \(x \in (x_2,\infty) \), that is, \(\text{sgn}(V_p(x)) \) is not a constant.

This completes the proof. \(\Box \)

Using Theorem 1, 2 and Lemma 5, 6, 7, the following theorem is immediate.

THEOREM 3. Let \(q \geq \log_2 (9/4), \log_{\pi/2} (3/2) \leq r \leq 10/9, \log_2 3 - 1 \leq s \leq 4/5. \) Then we have

\[
\left(\frac{2}{3}A^q + \frac{1}{3}G^p \right)^{1/q} > M_{2/3} > \left(\frac{2}{3}A^r + \frac{1}{3}G^r \right)^{1/r} > P > \left(\frac{2}{3}A^s + \frac{1}{3}G^s \right)^{1/s} > M_{1/2}.
\]

(4.14)

REMARK 2. In [11] Kouba proved that inequalities

\[
\left(\frac{2}{3}A^p + \frac{1}{3}G^p \right)^{1/p} < I < \left(\frac{2}{3}A^q + \frac{1}{3}G^q \right)^{1/q}
\]

(4.15)

hold if and only if \(p \leq 6/5 \) and \(q \geq (\log 3 - \log 2) / (1 - \log 2) \).

Relation (4.14) in combination with (4.15) leads to

\[
\left(\frac{2}{3}A^p + \frac{1}{3}G^p \right)^{1/p} > I > \left(\frac{2}{3}A^q + \frac{1}{3}G^q \right)^{1/q} > M_{2/3} > \left(\frac{2}{3}A^r + \frac{1}{3}G^r \right)^{1/r} > P > \left(\frac{2}{3}A^s + \frac{1}{3}G^s \right)^{1/s} > M_{1/2},
\]

(4.16)

where \(p \geq (\log 3 - \log 2) / (1 - \log 2), \log_2 (9/4) \leq q \leq 6/5, \log_{\pi/2} (3/2) \leq r \leq 10/9, \log_2 3 - 1 \leq s \leq 4/5. \)
REFERENCES

(Received April 9, 2012)

Zhen-Hang Yang
System Division Zhejiang Province
Electric Power Test and Research Institute
Hangzhou, Zhejiang
China, 31001
e-mail: yzhkm@163.com