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POLYA TYPE INTEGRAL INEQUALITIES:
ORIGIN, VARIANTS, PROOFS, REFINEMENTS,
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(Communicated by S. Varosanec)

Abstract. In the article, the author gets to the bottom of the origin of Pélya’s integral inequality,
plots out the development of the theory of inequalities, collects variants and proofs of Pélya’s
integral inequality, surveys Iyengar-Mahajani’s, Agarwal-Dragomir’s, Cerone-Dragomir’s, and
Qi’s refinements, generalizations, and applications of Pélya’s integral inequality, and find equiv-
alences between these integral inequalities.

1. Prologue

In 1921, the famous mathematician Georg Pélya in [35] proved an integral in-
equality. This inequality may be used to estimate an integral by bounds of the first
order derivative of its integrand. In 1925, G. Pdlya and G. Szegoé listed this integral
inequality as a problem in their book [36]. See also [37, 38].

Seventeen years later, in 1938, two Indian mathematicians K. S. K. Iyengar and G.
S. Mahajani respectively in [19, 28] generalized Pélya’s integral inequality by geomet-
ric method.

Pdlya’s integral inequality, Iyengar-Mahajani’s integral inequality, and their vari-
ants or simplifications often appear in textbooks of mathematical analysis, mathemat-
ical competitions or contests, graduate admission examination of mathematics in the
world, and the like. See [7, 21, 22, 47], for example.

However, it is wondered that, between 1939 and 1975, there is no any new results
about generalizations, extensions, refinements, and applications of Pélya’s and Iyengar-
Mahajani’s integral inequalities to be found.

Till 1976, three Yugoslavian mathematicians, G. V. Milovanovié, J. E. Pecarié,
and P. M. Vasié, published respectively two joint papers [30, 45] on generalizations of
Iyengar-Mahajani’s integral inequality.
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2 FENG QI

Twenty years passed again. In 1996, while the author in [39] refined and gen-
eralized Pélya’s and Iyengar-Mahajani’s integral inequalities simply and elegantly by
Rolle’s mean value theorem, R. P. Agarwal and S. S. Dragomir in [1] also refined and
generalized Iyengar-Mahajani’s integral inequality by Hayashi’s integral inequality and
gave some applications to special means. The results in [39] were seemingly obtained
between 1993 and 1994 at the latest, since this happened after the author bought the
book [23] at Beijing City in the summer holiday in 1993.

From 1997 on, there are many mathematicians, such as V. Culjak, P. Cerone, X.-L.
Cheng, Y. J. Cho, L.-H. Cui, Lj. Dedi¢, S. S. Dragomir, N. Elezovi¢, 1. Franji¢, B.-N.
Guo, Q.-D. Hao, V. N. Huy, B.-Y. Jiang, W.-M. Jin, S. S. Kim, W.-J. Liu, Z. Liu, Q.-
M. Luo, Q.-A. Ngo, C. E. M. Pearce, J. Pecari¢, 1. Perié, J. Sdndor, M. Z. Sarikaya,
Y.-X. Shi, Y. Sun, N. Ujevié, S. Wang, X. H. Wang, C. C. Xie, H.-T. Yang, S. J. Yang,
and Y.-J. Zhang, to study Pdlya-Iyengar-Mahajani type integral inequalities and their
applications by utilizing various techniques, approaches and methods.

Because the World War 1II ruined Japan by two nuclear bombs or other reasons,
the original version of [35] was difficult to be found. So almost all mathematicians
did not mention G. Pélya and his paper [35] and unknowingly attributed this kind of
inequalities to K. S. K. Iyengar [19].

Inequality is one of the most basic concepts in mathematics and mathematical
sciences. The famous mathematician H. Bohr said: “All analysts spend half their time
hunting through the literature for inequalities which they want to use and cannot prove”.
See [12] and [31, VII]. The Mathematical Reviews pointed out that it is not egregious no
matter how to emphasize the importance of inequalities. It is impossible to image what
the actuality of contemporary mathematics is if there were no inequalities such as the
arithmetic-geometric-harmonic mean inequalities, Cauchy inequality, Gram inequality,
Hermite-Hadamard inequality, Holder inequality, Minkowski inequality, Steffensen’s
inequality, Soblev inequality, Tchebycheff inequality, and Young inequality.

The development of mathematical inequality theory and applications experiences
three stages, in the author’s own opinion.

1. The first stage is before 1933. In this stage, inequalities are scattered, dispersive,
and unsystematic.

2. The second stage began with the book [17]. Herefrom, the theory of mathemat-
ical inequalities was created formally. In this stage, a lot of books for collecting
and systemizing inequalities were published on the globe, the word “inequality”
was first gathered in the 1982 Mathematics Subject Classification of the Ameri-
can Mathematical Society, many conferences on inequalities held termly all over
the world, and so on.

3. The third stage started from 1997. In this stage, except that publishing books
and holding conferences on inequalities still keep on, the following international
journals on inequalities were founded successively.

(a) Journal of Inequalities and Applications, started from 1997, founded by R.
P. Agarwal, and published in sequence by Gordon and Breach Science Pub-
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lishers (1997-2001), Taylor & Francis (2002), Hindawi Publishing Corpo-
ration (2005-2011), and Springer Verlag (2012—now). It was ever renamed
as “Archives of Inequalities and Applications” and published by the Dy-
namic Publishers (2003-2004);

(b) Advances in Nonlinear Variational Inequalities, started from 1998, founded
by R. U. Verma, and published by the International Publications in USA;

(c) Mathematical Inequalities & Applications, started from 1998, founded by
J. Pecari¢, and published by the Publishing House ELEMENT in Croatia;

(d) RGMIA Research Report Collection, started from 1998, founded by S. S.
Dragomir, and published by Victoria University in Autralia (1998-2010)
and by the Austral Internet Publishing (2010-now);

(e) Journal of Inequalities in Pure and Applied Mathematics, started from 2000,
founded by S. S. Dragomir, and published by Victoria University in Aus-
tralia (2000-2009);

(f) Journal of Mathematical Inequalities, started from 2007, founded by A.
Kufner and J. Pecarié, and published by the Publishing House ELEMENT
in Croatia;

(g) Advances in Inequalities and Applications, started from 2012, founded by
S. S. Dragomir, and published by the Science & Knowledge Publishing
Corporation Limited.

The monographic series “Advances in Mathematical Inequalities Series” has been
publishing by the Nova Science Publishers in USA.

As a companion of the above mentioned RGMIA Research Report Collection, an
internationally academic organization, Research Group in Mathematical Inequalities
and Applications (RGMIA), was founded in September 1998 at the Victoria University,
Melbourne, Australia. The logo of the RGMIA is

RGMIA

v(G)> Y v(m)

meG

The motto of the RGMIA is “The value of the group is greater than the sum of its
members”. Its current website is at http://rgmia.org run by the Austral Internet
Publishing.

The idea of writing this work initiated on 10 November 2001 when the author was
visiting the RGMIA as a Visiting Professor.
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2. Preliminaries

The following theorems and inequalities are well-known and famous. They are
key tools of this paper.

2.1. The mean value theorems

The mean value theorems for derivative or definite integral are bridges between the
local and global properties of functions and they play fundamental roles in mathematics.

Since the mean value theorems can be looked up in standard textbooks of mathe-
matical analysis and calculus, so we recite them without proofs.

LEMMA 2.1. (Rolle’s mean value theorem) Ler f(x) be a function satisfying the
following conditions:

1. f(x) is continuous on the closed interval [a,b];
2. f(x) has derivative of the first order in the open interval (a,b);

3. The values of f(x) at the end points of the interval |a,b| equal one another, that

is, f(a) = f(b).
Then there exists at least one point 1 € (a,b) such that f'(n) = 0.

LEMMA 2.2. (Lagrange’s mean value theorem) Let f(x) be a function satisfying
the following conditions:

1. f(x) is continuous on the closed interval [a,b];
2. f(x) has derivative of the first order in the open interval (a,b).
Then there exists at least one point 0 € (a,b) such that
f(b)—fla)=(b—a)f'(6). (2.1)

LEMMA 2.3. (Taylor’s mean value theorem with Lagrange’s remainder) For n €
N, let f(x) be a function satisfying the following conditions:

1. f @) (x) for 0 < i< n are continuous on the closed interval [a,b];
2. ftD(x) exists in the open interval (a,b).

Then for any given x € (a,b] there exists at least one point & € (a,x) such that

AERICS)
(n+1)!

% (a)
!

f(x)=f(a)+ i T (x—a)k+ (x—a)"t (2.2)
k=1
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2.2. Steffensen’s and Hayashi’s integral inequalities

The original texts of Steffensen integral inequality in [43] are quoted as follows.

LEMMA 2.4. ([43]) Assume that two functions f(t) and ¢(t) are integrable on
[a,b] such that f(t) neverincreases and 0 < ¢(t) < 1. Putting for abbreviation

) :/b(b(t)dt. 2.3)

/bblf(t)d&/ubf(t)(f’(t)dtg/:Mf(t)dt. (2.4)

If o(t) =1 0r ¢(t) =0 or f(t) is a constant for all t, the two limits in (2.4) coincide.

Then

The double inequality (2.4) is called Steffensen integral inequality. Its original
proof was quoted in [33, pp. 311-312].

LEMMA 2.5. ([18]) Let h: [a,b] — R be a non-increasing function on |a,b] and
g [a,b] — R anintegrable function on [a,b] with 0 < g(x) < A for all x € [a,b]. Then

b a+A
Al nix dx</h dng/ h(x) dx, 2.5)

where

1 b
- / g(x)dx. (2.6)

The double inequality (2.5) is called Hayashi’s integral inequality. It is easy to see
that Lemma 2.5 is a minor generalization of Lemma 2.4.

We note that J. F. Steffensen in [42] proved a very more general inequality than (2.4).
This more general situation can be depicted by the following lemma.

LEMMA 2.6. ([42]) Let h: [a,b] — R be a non-increasing function on |a,b] and
g la,b] — R be an integrable function on |a,b] with ¢ < g(x) < @ for all x € [a,b].
Then

q)/ab_kh(x)dx—kd)/bblh(x)dxg/bh(x)g(x)dx
qn/ dx+¢/ hix @7

b _
2 :/ Gdx, Gy =M= g4 2.8)
a D—9¢
REMARK 2.1. Taking ¢ =0 and ® =1 in (2.7) yields the inequality (2.4). Set-
ting ¢ =0 in (2.7) derives (2.5).

where

REMARK 2.2. For more information on Steffensen’s and Hayashi’s integral in-
equalities, please refer to [24, pp. 619-622], [25, pp. 570-572], [32, pp. 142—-157] and
[33, Chapter XI] and the references therein.
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3. Polya’s integral inequality: Origin, proofs, and refinement

In this section, we shall mention the origin and history of Pélya’s integral inequal-
ity, demonstrate its variants, present several proofs (including several analytic proofs
and a geometric proof), and establish two equivalences.

3.1. The origin of Polya’s integral inequality

In 1921, Georg Pélya published a three pages paper [35] in old German. See
Figures 3.1 to 3.3 below.
A sketched translation in English of this paper is as follows.

A Mean Value Theorem for Functions of Multiple Variables
by
GEORG POLYA in Ziirich, Schweiz

1. If we pile a certain quantity of grain or sand on a round place, then the maximal
slope of the resulting pile is minimal, when the slope is everywhere equal, i.e., when
the pile has the form of a cone. Let see, where the exact formulation and the analytical
proof of this obvious fact will lead us.

The slope in a given point of a surface is measured by the tangent of the angle
formed by the tangent plane and the horizontal (x,y)-plane. If the axis of our cone is
the z-axis, then all the tangent planes form the same angle with the (x,y)-plane and the
tangent of this angle we denote by T . If the basis of the cone lies in the (x,y)-plane, if
it is bounded by the circle

P4y = (3.1)

in a different way, if the volume is bounded from above by the surface
2= f(xy), (3.2)

then f(x,y) vanishes in every point of the circle (3.1) and the equality

T[] rnaxay

holds, where the double integral is taken over the disc bounded by the circle (3.1). The
slope in a point (x,y,z) of the surface (3.2) is measured by

9z\? N 2z\*
ox dy /)
So, we come to the following theorem.
Suppose that the partial derivatives f.(x,y) and fy’(x, y) of the function f(x,y)

exist. If f(x,y) =0 on the circle (3.1), then there exists an inner point (§,1) of (3.1)
with the property

Ve mp+REmE > 5 [f sy axay, (33



POLYA TYPE INTEGRAL INEQUALITIES

THE TOHOKU MATHEMATICAL TOURNAL

Ein Mittelwerisatz fir Funktionren mehrerer
Verinderlichen,

yon
Grorg POLYA in Ziivich, Schweiz.

1. Wird auf einem Lreisrunden Platz ein gegebenes Quantum Ko
oder Sand aufgestapelt, so ist die Masimalbdschung des entstehenden
Haufens dann am kleinsten, wenn die Boschung tiberall gleich ist, d.h.,
wenn der Haufen die Torm eines geraden Kreiskegels hat. Sehen wir
zu, wohin uus die genaue Formulierung und der analytische Beweis
dieser plausiblen Tatsache fithren. :

Die - Bégchung in einem Punkte einer Fliche wird durch den
Tangens des spitzen Winkels gemessen, den die Tangentialebone mit
der horizontsl gedachten w, y-Ebene einschiiesst. Ist die Axe unseres
goraden Kreiskegels die z-Axe, so bilden alle seine Tangentialebenen den
gleichen Winkel mit der x, y-Tbene, dessen Tangens mit 7" bezeichnet
werden goll. Liegt die Grundfliche des Kegels in der =, y-Ebens und
wird sie dnsalbsﬁ durch dle Kre:shme )

10 st

begrenzt, so ist die Hohe des Kegels rT und gein Inhalt ”;;T . Denlken

wir uns jetzt denselben Voluminhalt auf eine andere Weise {iber die
Flioche des Kreiges (1) verteilt. Ist er von oben durch die Fliche

@ e=f (2, 9) o
begrenzt, so verschwindet f (g, ) in jedem Punlkte der Kreislinie (1) und

=
’”"T -—fff(w, y) da dy,

dﬂB Doppelintegral iiber die Fliche des Kroises erstreckt. Die Béschung
in oinem Punkte 2, 3, # der Flicho (2 ddh\/5 %z
i m Punkte 2, 9, z der ¥liche (2) wird dure (T-l-(ay)

gomessen, So gelangen wir zu folgendem. Sata :

Figure 3.1: The first page of G. Pélya’s paper
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9 GEORG POLYA:

Die Funktion f(w,y) 8oll beide pariidle Ableitungen f!(z, 7) und
I/ (@, y) besitzen, It f (%, 4)=0 am Rande des Kreises

(1) a4yt =r",

80 gibt es im Innern dieses Kveises einen Punkt &, 7, so besohaffen, dass

(3) ,\/(.f,’ {2 ,)))’+(f;r N 7;)5 >-—;§%fff(m, y) da dy,

das Doppelintegral tiber die Fldohe des Ilreises (1) erstreokl,

Der Fall der Gleichheit bleibt in der Unglexchung (8) nusgeschlossen,
da die Funktion

zzT(r—L/_:éi+y’ )

im Punkte w=0, y=0 keine partiellen Ableitungen besitzt., Die Aussage

des Satzes besagt mehr als das urspriingliche Bild, da sie nichis iber
- das Vorzeichen von f(, y) voraussetzt,

. ‘ N of ofN®
2. Ioch bezeichne mit M die obere Schranke von .‘/ (_5':]:7) +(‘é§') s
Ich metze M als endlich voraus, dn im andern Fall nichts zu beweisen
ist—Hs sel @, y ein von 0, O verschisdener Punkt im Innern des
Kaeises (1), ! seine kiirzeste Eatfernung von der Peripherie von (1) und

a, b der Fusspunkt dieser kirzesten Entfernung, Die Funktion

FO=fa-245-L1
r 7
hat dann folgende Eigenschaften :

F{0)=0, F(l)=f(-'v, )
TP e s af a s af b - ar b‘ < M
. Px r Oy T-\/( )\/
Daber ist nach dem Mittelwertsatze der Difforentialrechnung
) S ey = 1AL

Sollte in der Ungleichung (4) fiir jeden innern Punkt @, y des Kreises (1)
das Zeichen =gelten, so wiire die Funktion f (2, y) durch die Mantelfliche
eines geraden Kreiskegels dargestellt, also im Punkte #=0, y=0 nicht
differenzierbar, Folglich gibt ey einon Punkt o', ¢/, wo

(5) I, 9y <IM.
Die Funktion f(w, ) iat atetig und so folgt aus (4) nnd (5)

Figure 3.2: The second page of G. Pélya’s paper
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BIN MIPTELWERTHATYZ FUR FUNETIONEN. 2

L = r
J[r(ocos s prind) pdp< @[3 (r=p) p dp =223t
1 o v o

TLetztere Ungleichuug nnterscheidet sich nur in der Bezelchnungsweise
von der zu beweisenden (B).

Ofenbar lhsst sich der eben bewiesene Satz aul andere Dimen-
siongznhlen, auf andere Gebiete und auf sndere definite guadvatische
Formen dor ersten portiellen Derivierten mit Leiohtigkeit iibertragen,
Der einfachste analoge Satz ist wohl dieser:

Tt die Funhtion f(t) differensierbar und sl

fla)=f()=0,

§o {af
. A
J'@> ‘E_T},ff@) dt

v mindeslens ginen Werl © awischen a und b,

Fasst man f(f) als elne Geschwindigkelt auf, so erhilt man
folgende '[afsache: Wenn ein malerieller Punkt eine ILiingeneinheit
withrend einer Zeibeinheit wrticklegend von Ruhelage in Eubelage
golangh, so erfilnt er irgendwo zwischen den beiden Rubelagen eine
Beschlennigung von grisserem lehage nls 4 Dis dugelegte kleine
TUntersuchung isb von dieser Bemerkung susgegangen, die ihrersaits
durch eine technische Aufgabe angeregh wurde.

Figure 3.3: The third page of G. Pélya’s paper

where the double integral is taken over the disc bounded by the circle (3.1).
Equality in (3.3) is not possible, since the function

= T(r— VETR)

is not differentiable at (x,y) = (0,0). This theorem is more general than our original
problem, since we did not suppose anything about the sign of f(x,y).

2. Define the minimum distance between any point (x,y) and the corresponding
point (a,b) on the boundary by the variable /. Use M to denote the upper bound of

(%)

Then consider the function
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which satisfies the properties F(0) =0, F(I) = f(x,y), and

, . dfa afb ar\* [af\* b2
F“)—‘m‘a—y?#(%) (%) Vit sm

By using the mean value theorem for derivative we have

flxy) <IM (3.4

Therefore,

2r r 2r r }"3
/ d6/ Sf(pcosd,psind)pdp </ d6/ M(r—p)pdp:27t€M.
0 0 0 0

Obviously, it is easy and possible to generalize the theorem to other dimensions,
regions, and definite quadratic forms of the first partial derivatives. The most simple
case is the following theorem.

If f is differentiable and if f(a) = f(b) =0, then

7(1) > ﬁ/ﬂbm)dz (3.5)

for a certain T between a and b.

If we consider f as a velocity, then we obtain the following conclusion: If a
material point travels over a unit distance during a unit interval from one rest position
to another, then there must be a moment, when the acceleration has the value more than
4. The presented research was inspired by this comment, which was, on the other side,
prompted by a problem arising in engineering.

3.2. Polya’s integral inequality and its variants

The inequality (3.5) and different variants have been collected in many textbooks
of mathematics for undergraduates.
Problem 121 in [36, p. 62], [37, p. 80] and [38, p. 83] states that

THEOREM 3.1. Let f(x) be differentiable and not identically a constant on the
closed interval |a,b] with f(a) = f(b) = 0. Then there exists at least one point & €
[a,b] such that

> g [ 1w (3.6)

The answer of Problem 121 in [36, p. 62] and [38, pp. 286-287] showed that the
original source of Theorem 3.1 is the paper [35]. This is the only hint we found pointing
to the paper [35].

Problem 3 in [22, pp. 322-323] restated Theorem 3.1 as follows.
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THEOREM 3.2. Let f be a nonzero differentiable function in [a,b] and f(a) =
f(b) =0. Then there is a point t in the interval |a,b] such that

|f(x / f(x) (3.7)

In [7, Exercise 12, p. 159] and [21, pp- 326—327], the following inequality is given.

THEOREM 3.3. Ler f(x) be two times differentiable on [a,b] and f'(a) = f'(b) =
0. Then there exists a point & € (a,b) such that

(&) = 51f(b) = f(a)l. (3.8)

4
(b—a)
The following theorem may be regarded a generalization of Theorem 3.1.
THEOREM 3.4. Let f(x) be differentiable and not identically a constant such that
fla)=f(b)=0 and |f'(x)] <M on |a,b]. Then

(b—a)’M

/abf(x)dx <

In [27, pp. 354-355], the following theorem with stronger conditions than Theo-
rem 3.4 was proved.

(3.9)

THEOREM 3.5. Let f(x) have a continuous derivative on the closed unit interval
[0,1] and f(0) = f(1) =0. Then

< - "(x)]. .
2 x??}’i] |f ()] (3.10)

In [28], by a geometric argument, a strengthened form of Theorem 3.4 without
equality is obtained, which can be restated as follows.

THEOREM 3.6. If f(x) is differentiable and not identically zero with f(a) =
f(b)=0 and |f'(x)| <M on [a,b], then

/ubf(x)dx

It is worthwhile to point out that the constant

Y
< M' G.11)

(174—)2 in inequalities from (3.6)
to (3.8), the constant (b— ) ininequalities (3.9) and (3.11), and the constant in (3.10)
are the best possible.

In conclusion, it is obvious that Theorems 3.1 to 3.6 can be combined into the

following theorem.

THEOREM 3.7. Let f(x) be differentiable and not identically constant on [a,b]
with f(a) = f(b) =0 and M = sup,c(, |f'(x)|. Then

b—a)?
1 M. (3.12)

(b— a2

The constant in (3.12) is the best possible.
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To the best of the author’s knowledge, the inequality (3.6) is the origin of the
above mentioned inequalities. For this reason, the inequality (3.6) is called Pdlya’s
integral inequality and the inequalities from (3.2) to (3.12) are called Pélya type integral
inequalities.

3.3. Proofs of Pélya’s integral inequality and its variants

In this section, several proofs for Polya type integral inequalities, which are col-
lected, gathered, and modified from some textbooks and articles, will be presented.
Most of these proofs have been published in the paper [14].

3.3.1. Proof of Theorems 3.1 and 3.2

This proof is quoted from [22, pp. 322-323], [36, 37], and [38, pp. 286-287].
Let M = sup,<,; | f'(x)|. Then, by Lemma 2.2,

f) = f'@0)(x—a) <M(x—a) for aéxéa;b,
f(x) f()(b x) (b x) for a;b<x<b7

where a <t < x and x < s < b. The function M(x—a) for a < x < “;h and M(b—x)
for “”’ < x < b is not differentiable at x = “”’ . Hence we can not have that f(x) =
M(x—a) for a <x < 2 or f(x) =M(b— ) for 452 < x < b simultaneously. Thus,

setting m = #,

/abf(X)dx<M/am(x—a)dx+M/mb(b_x)dx:M@

b
> 7(1)_461)2[1 f(x)dx

The proof of Theorem 3.2 is complete. [

or

3.3.2. Proof of Theorem 3.3

This is excerpted from [21, Chapter 3, Exercise 11, p. 327].
Since f’(a) = f'(b) =0, by using Lemma 2.3,

(55 o E 0

f(a;b) :f(b)+%<b_a>27
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where x1 € (a,%52) and x, € (“42,b) . Further,

f(b)—f(a)<'f(b) f(““’)' 'f("”’) f(a)
. (b;a)2f”(x1)+f”(Xz).

2!
Let f'(§) = max{| /" (x1)[,|" (x2)[} . Then

L )]+ 17 ()

Rl e

The inequality (3.8) follows. [

3.3.3. Proof of Theorem 3.5

This proof is quoted from [27, pp. 354-355].
Since f(0) = f(1) =0, then

[ rwax= [ rat—a =la-aselly - [ - aras
——/0 (x—a)f'(x)dx.

From some property of definite integral, it follows that

- \ [ e areas

1 1
< —al|f'(x)|dx < ' / —adx.
[ b=l lax< ma 170l [ v alax

For0<a<l1,

x| < max [f(x )[/Ou(a—x)dx+/al(x—a)dx]

0<x<1
= max || (ar— 22 )| + [(52
orgle f ax 2x . 2x ax

= nax ] (a3 ).

O<x<1

! 1\? 1

[ roas) <[ (a=3) + 5] max 1
1

Since (a— 5)24— 1>
ity (3.5) holds. U

)

that is,

13

(3.13)

% and the inequality (3.13) is valid for all a € [0, 1], the inequal-
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3.3.4. An analytic proof of Theorem 3.6

This is a modification of the above proof of Theorem 3.2.

By Lemma 2.2,
M(a—x) < f(x) = (1) (x—a) < M(x—a) for agxg“;b,
M(x—b) < f(x) = f'(s)(b—x) < M(b—x) for a;nggb,

where a <t <xand x <s <b.

The functions +M(x —a) for a <x < “f2 and £M(b—x) for 42 <x < b are
not differentiable at x = 2. Hence we can not have that f(x) = iM (x —a) for
a<x< %P or f(x) =£M(b—x) for “2 < x < b simultaneously. Thus, setting
m= &b

=atb,
b y=a?

b m
/af(x)dx<M/a (x—a)dx+M ; y)

and , B . (b_a)2
/af(x)dx>M/a (a—x)dx—!—M/m (x—b)dx=—-M R

The proof of Theorem 3.6 is complete. [

3.3.5. A geometric proof of Theorem 3.6
This is the original proof in [28] by G. S. Mahajani. Let A and B be the points

y=f()

Figure 3.4:

(a,0) and (b,0) and let K be the point (1(a+b),3(b—a)M) so that KAB is an

isosceles triangle with /KAB = ZKBA = arctanM . Under the given conditions, the
curve AB:y = f(x) must lie within the triangle. See Figure 3.4 below.
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The area of the triangle equals (b;“)zM , while the left-hand side of (3.11) gives
the area of the curve AB : y = f(x). Hence the inequality (3.11) is proved. [

3.3.6. The first proof of Theorem 3.7

Constructing two functions

_ M(x—a), x¢€la.c], B
L(x)—{ xée e and l(x)—{

where ¢ € [a,b] and d € [a, D] are arbitrary.
By Lemma 2.2, it is easy to see that /(x) < f(x) < L(x), hence,

/hl(x)dx< /hf(x)dx< /hL(x)dx, (3.14)

<
—
>
|
Nl

that is,

2 &2+ b2
—M[d2 (a+b)d+a ;b] /f M[c —(a+Db)c+ —;b . (3.15)

It is not difficult to reveal that the function

&2+ b2
b
hx) 2 22— (a+ b+ T (3.16)
for x € [a,b] attains its unique minimum (b=a)” “) at the point x = %3 € [a,b]. Thus,
b—a)’M _ [’ b—a)’M
—%é/ f(x)dxé% (3.17)

and understand that the constant (h;“)z in (3.17) is the best possible. [

3.3.7. The second proof of Theorem 3.7

Properties of definite integral and integration-by-part give

} —/ x—r)f (x)dx

/\x—er \dx<M/ |x —r|dx,

/u<x—r>

where r is an arbitrary real number.
Direct computation shows that the function g(r) = [, f |x — r|dx has a minimum

2
@ when r takes the value “f2 € [a,b], thus inequality (3.12) follows and the con-
2
stant M in inequality (3.12) is the best possible. []
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3.3.8. The third proof of Theorem 3.7

From f(a) = f(b) =0, it is deduced that f’(x) # 0 can not keep the same sign in
(a,b). As aresult of this, integrating by part and utilizing related properties of definite

integral leads to
b b
o= [ o x| = | [af @ ax
b b b
/u (x—c)f/(x)dx—i—c/u f(x)dx| = /a (x—c)f'(x)dx

b ; b 2 a2+b2
g/ \x—c\-\f(x)\dng/ |x—cldx=M|c"—(a+b)c+ 7|

b
f(x)dx

where ¢ € [a,b]. From the conclusion that the function A(x) defined by (3.16) attains

2
its minimum (h:fl) at x = “t° € [a,b], Theorem 3.7 follows. [

3.3.9. The fourth proof of Theorem 3.7

Let g(x)= [, f(¢)dz on [a,b]. Then g(a) =0 and g(b) :f:f(t)dt. By Lemma 2.3,
for ¢ € [a,b], it follows that

g"(&)

g(c)=gla)+g'(a)(c—a)+ T —a)’
:f(a)(c—a)—i—%(c—a)z: @(c—a)z (3.18)
and
_ vy 8 (&)
8(c) =g(b) +5(b)(c—b) +>—=(c~D)
:/abf(t)dt—kf(b)(c—b)+f/§2)(c—b)2 (3.19)

:/bf(t)dt+@(c—b)2.

where & € (a,c) and & € (c,b). Subtracting between (3.18) and (3.19) yields

[ rwar)=| P50 e - LED ey

/(&)
S (e = by

(&)l
Tz(c_b)z

(c—a)®

_|_

N

f'(E&)
2

@l
< %[(c—a)z—i-(c—b)z].
M

It is clear that the function p(c) = (¢ —a)? + (¢ —b)? has a minimum at the

point ¢ = “f2. Theorem 3.7 is proved. [
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3.3.10. The fifth proof of Theorem 3.7

Using properties of definite integral and applying Lemma 2.2 to the integrands
yield

/abf(x)dx

= /acf(x)dx—i-/cbf(x)dx

<| [ - s@ian+| 170 - roan

a

_|_

+

c b
= | [ w=a)rmdy+| [ (e=b)r'(m)dx

< [-alrmilavs 60l mn)la
<M{/ﬂc(x—a)dx+/cb(b—x)dx]

a2+b2]

:M{c2—(a+b)c+

where 1y € (a,x) and 1, € (x,b) in the third and fourth lines are dependent of x and
c € la,b].

(b—a)® atb
7

Since the function %(x) defined by (3.16) attains its minimum at x = 57,

Theorem 3.7 follows. [

3.4. Qi’s refinement of Polya type integral inequalities
By Lemma 2.2, a refinement of Pélya type integral inequalities were obtained
in [39].

THEOREM 3.8. Let f(x) be continuous on [a,b] and differentiable in (a,b). Sup-
pose that f(a) = f(b) =0, and that m < f'(x) <M in (a,b). If f(x) is not identically
zero, then m < 0 <M and

(b—a)> mM
2 M-m

(3.20)

/ bf(x)dx‘ <

Proof. That m < 0 < M is an immediate consequence of Lemma 2.2.
The idea now is to apply Lemma 2.2 again in order to estimate the integral. Let ¢
be a parameter satisfying a < ¢ < b, and write

[ reoax= [0~ r@paxs [0~ sl

C
a

c b
:/a (x—a)f’(@l)d)H—/C (x—b)f(6,)dx,
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where a < 0) < ¢ < 6, <b. From f'(0,) <M and f'(62) = m, it now follows that
b c b
/ f(x)dxéM/ (x—a)dx+m/ (x—b)dx
a a c

@AM — b*m
2

M—m
2

2+ (bm—aM)c +

and the upper bound is merely a quadratic expression on the parameter c.
Moreover, it is easy to check that this quadratic has the minimum value
(b—a)®> mM
2 M-m

when ¢ = %, and this value of ¢ does satisfy a < ¢ < b. Therefore

b (b—a)> mM
dx < — e 3.21
| e o (3.21)
Similarly, we have
b c b
/ f(x)dx}m/ (x—a)dx—|—M/ (x—b)dx
a “ ¢ 3.22
m—M , am—b*M 622
= c”+ (bM — am)c + —————,
2 2
and, on maximising this with respect to ¢, we find that
b (b—a)> mM
dx> —_— 3.23
| rwax> S (323)

The required result (3.20) follows from (3.21) and (3.23). U

3.5. Two equivalences

Now we establish two equivalences between Pélya type integral inequalities. The
idea comes from [26].

THEOREM 3.9. The inequality (3.12) in Theorem 3.7 is equivalent to the state-
ment that if g(x) is differentiable and not identically constant on [0,1] with g(0) =

g(1) =0, then
1
/ g(x)dx
0

and the constant % in (3.24) is the best possible.

1
< 7 sup [g'(x)] (3.24)
x€[0,1]

Proof. 1f taking a = 0 and b =1 in Theorem 3.7, then the inequality (3.12) is
reduced to (3.24).
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Conversely, let g(x) = f(x(b—a) +a) for x € [0,1] in (3.24), then
8(0) = f(a) =0, g(1)=f(b)=0,
'(x

§(x)=(b-a)f (x(b-a)+a),
')l = (b—a)lf'(x(b—a)+a),
(b—a)

Olf(x(b—a)+a)dx < sup |f'(x(b—a)+a)|,

4 e

which is reduced, by transform of variable, to

ahf(f)bd_ta < =) g

X |f'(1)]

4 t€la,b]

which means the inequality (3.12). O

THEOREM 3.10. The inequality (3.20) in Theorem 3.8 is equivalent to the state-
ment that if g(x) is continuous on [0,1] and differentiable in (0,1) satisfying that
g(0)=¢g(1)=0, m< g (x) <M in (0,1), and that g(x) is not identically zero, then

m<0<M and
mM

C2(M—m)’

(3.25)

Proof. This follows from the same arguments as in the proof of Theorem 3.9. [J

The inequality (3.24) may be called the normalized integral inequality of Pdlya
type. Similarly, the inequality (3.25) may be called the normalized integral inequality
of Qi type.

3.6. Remarks

We are now give some remarks.

REMARK 3.1. If replacing the condition f(a) = f(b) =0 by f(a) = f(b) =A in
Theorem 3.8, then the inequality (3.20) becomes

b b—a mM
—Al< - —_ 2
‘b—a/a Sl)dx ‘ 2 M—m (3:26)
REMARK 3.2. Let
D={x=(x1,x2,...,x%,) ER": |x| <r,n € N} (3.27)

and f: D — R. We conjecture that if all partial derivatives of f exist and the value of
f vanishes on the boundary of D, then there exists at least one point ) € D such that

T [afm)]{ (3.28)

x
= dx

n!! n—l—l
2Tn/2] /2] rn+1/f )dx <

where [%1 and L%J denote respectively the least and largest integers than 5.



20 FENG QI

REMARK 3.3. Itis easy to see that the inequality (3.8) can be rewritten as

1> G| [ r0at]

So, Theorem 3.3 is a variant of Theorem 3.1.

(3.29)

REMARK 3.4. Under the same conditions as in Theorem 3.7, if using the mean
value theorems for integral and for derivative in sequence, then a weaker integral in-
equality than the inequality (3.12) can be obtained as follows:

((b—a)f(6)|

_ (b—=a)|[f(0) — f(a)] +[f(6) - f(D)]]
2

_ (b=a)l(8=a)f (m) + (0 —b)f'(n2)]
2

< Goal(O—a b=

~(b—a)’M

=

where 6 € [a,b], N1 € (a,0),and M, € (0,b).

4. Iyengar-Mahajani’s integral inequality and its proofs

The first object of this section is to give a generalization of Pdlya type integral
inequalities stated in Section 3. This generalization, called Iyengar-Mahajani’s integral
inequality, are attributed to K. S. K. Iyengar [19] and G. S. Mahajani [28]. The second
object is to present analytic proofs of Iyengar-Mahajani’s integral inequality.

4.1. Iyengar-Mahajani’s integral inequality

In [19, 28], motivated by [36, Problem 121], K. S. K. Iyengar and G. S. Mahajani,
by means of geometrical considerations, respectively proposed proving the following
generalization of Pélya type integral inequalities.

THEOREM 4.1. Let f(x) be continuous and not identically a constant on [a,b].
If M is the upper bound of |f'(x)| in (a,b), then

M(b—a)* 1

Nt~ 36— a)fa) + )] < T - i) - P, @

The inequality (4.1) is sharp in the sense that it can not be improved.

REMARK 4.1. The inequality (4.1) is called Iyengar-Mahajani’s integral inequal-
ity, since it was first proved in [19, 28]. See also [31, pp. 297-298, 3.7.24] and [25,
pp- 558-559].
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REMARK 4.2. Taking f(a) = f(b) =0 in (4.1) yields inequalities (3.7) and (3.11)
readily. So Theorem 4.1 is a generalization of Pélya type integral inequalities.

4.2. Geometric proofs of Iyengar-Mahajani’s integral inequality
The following two geometric proofs are due to Iyengar [19] and Mahajani [28]
respectively.

4.2.1. Iyengar’s geometric proof

It is clear that

+/(b)

/abf(t)dt— %(b—a)[f(a)‘Ff(b)} = /ab [f(t) — % dz.

Let ¢ (1) = f(1) — L9 Then ¢(a)+¢(b) =0. Let o = ¢(a) = — LD Then,
as shown by Figure 4.1, the curve y = ¢(r) lies below Line BC: y = ot +M(t — a) and
Line CE: y = —oa — M(t — b), in other words, it lies below the polygonal line BCDE .

C

D PPN\.D F

Figure 4.1:
Similarly it lies above the polygonal line BD'C'E . Hence
/u " 6()d < area under BCDE — %(CP +AB)AP + %(CP _ EF)PF.
An easy calculation gives
1

1
CP=;M(b~-a), EF=AB=0, AP=;(b-a)

Therefore,

/abq)(t)dt< %{{(b_za)MjLa} (b;a—%>+ [W—a} (b;a+
_M(b—a)2_a_2_M(b—a)2 1

1 o
PF = —(b— —.
5b—a)+

)}

o
M7

B
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Similarly, considering the curve BD'C'E gives

/ah¢(t>dz > @ _Mboaf,
Hence
b b 1
| owar| = [ s =3 0-alr@+ )
M(b—a) 1
<= ) —f@P.

It is quite clear that equality can only occur when ¢ (¢) coincides completely with
BCDE or BD'C'E, which is however not possible since ¢’() exists at the points P and
P'. Hence the inequality (4.1) is proved.

Since we can approximate to BCDE as closely as we like by a curve through B
and E, it is obvious that the inequality (4.1) cannot be improved. [J

4.2.2. Mahajani’s geometric proof

As shown by Figure 4.2, the lines KA and KB are equally inclined to the x-axis,
and tano = M, oo = ZKAF, so that KTB is isosceles, KT and KB being equally
inclined to TB. Figure 4.2 shows that trapezium ARSB = 234 [f(a) + f(b)], so the left
term in (4.1) equals identically the area between the curve AB and the chord AB and
this is less than the area of the triangle KAB.

Y
T
K
B
A F
R
ol (a,0) (b0 *
Figure 4.2:

Now,

AKAB = AAFT — AAFB— AKTB

1 1 1 1
= EAF-FT— EAF-FB—ETB-ETB-tanéKTB

1 ) b—a TB?

= E(b — Ll) tano — T[f(b) —f(a)] — TCOt(X
(b—a)*tanoe  b—a
22

[/ (0)~ (@]~ {(b-a)ana—[(b)~(@)]} cote
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_ —4a)2 ano — L0 —4f( >]2cota
_(b—a)  [f(b) - fla)]?
= M- 4M

The proof of Theorem 4.1 is complete. [l

4.3. Analytic proofs of Iyengar-Mahajani’s integral inequality

In this section, Iyengar-Mahajani’s integral inequality (4.1) with equality will be
proved analytically by using Lemma 2.3 and the method used in Section 3.3.6 respec-
tively.

THEOREM 4.2. Let f(x) be continuous and not identically a constant on [a,b]
and differentiable in (a,b) such that M = sup,c, ;) | (x)|. Then

1 b b b—

‘b—a/a ﬂx)dx_f(a);f( )| < 4Ma [M? — S§(a,b)], 4.2)
where o )
— f(a

S()(Ll,b) = ? 4.3)

The inequality (4.2) is sharp in the sense that it can not be improved.

REMARK 4.3. If taking f(a) = f(b) = 0, then the inequality (4.2) is reduced to
(3.9) and (3.12). So Theorem 4.1 is a generalization of Pélya type integral inequalities.

REMARK 4.4. The inequality (4.2) is a rearrangement of the inequality (4.1) and
gives lower and upper bounds of the difference between the integral mean of f(x) on
[a,b] and the arithmetic mean of f(a) and f(b).

4.3.1. The first analytic proof of the inequality (4.2)
Define

v = [ 10

for x € [a,b]. Then y(a) =0, y(b) = f:f(t)dt, and y(x) is differentiable on [a,b]
and two times differentiable in (a,b). By Lemma 2.3, for any ¢ € (a,b), we have

W(e) = w(@) - v (@)e—a)+ L) (g

2!
, (4.4)
= r@(e—a)+ T e —ap?,
v(e) = () + /b)) + LI (e 2
(4.5)

_ /abf(t)dt+f(b)(c—b) + f/(;'z) (c—b)2
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Subtracting between (4.4) and (4.5) and simplifying results in

[ 108~ b1 8) —as @] +170) - st@e
) e L) s

— (emam (e

/(2”1)(6‘—61)2 + f/(n2) (C—b)z

2

<

M [(c—a)2+ (c—b)z],

< =
2

where 1 € (a,c) and M, € (c,b), which is equivalent to

M [(c—a)* + (c—b)*] — [f(b) — f(a)]c

. )
b
< [ 10ar=1bso) —as@] < 3 [le =P +(c =02 - /() - f(@le.

It is easy to see that the function

M

5 lle=a +(c=b)’] = [/(b) = f(a)le

takes its minimum

[f(b) — f(a)]? (b—a)2M+a+b
M 3 2

at the point

and the function

attains its maximum

[f(b)—f(@] (b—a)l’M a+b

o 1) - fla)
at the point
_fl@)—f(b) atb
c= M > € [a,b]
Consequently,
[f(b)—f(@)* (b—a)*M a+b
S T k)~ (@)
b —a)? —f@))P? a
< [[10ar o) ~asta) < C=IM IO SGE_aPp) g,

which is equivalent to the inequality (4.2). [
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4.3.2. The second analytic proof of the inequality (4.2)

This proof is excerpted from [47, p. 163]. Similar to the first proof of Theorem 3.7
in Section 3.3.6 on pages 15-15, Theorem 4.2 can also be verified by utilizing the
following inequalities

and

to estimate the integral fab fx)dx. O

5. Refinements of Iyengar-Mahajani’s integral inequality

Iyengar-Mahajani’s integral inequality (4.1) was refined in [1, 5, 26, 39] respec-
tively and independently.

5.1. Agarwal-Cerone-Dragomir’s integral inequality

Employing Hayashi’s integral inequality (2.5), Iyengar-Mahajani’s integral inequal-
ity (4.1) was refined by R. P. Agarwal and S. S. Dragomir in [1] and by P. Cerone and
S. S. Dragomir in [5] respectively.

Their result can be quoted as follows.

THEOREM 5.1. ([1, Theorem 2]) Let f be a differentiable function on |a,b] with

— = 1 /
M= XI;I[ZD;]f() m_ngif},]f(x) (5.1)

and M > m. If f' is integrable on [a,b], then

)+f( )
‘b a/f
[f(b) — f(a) —m(b— a)][ (b—a)— f(b)+ f(a)]
< 2 —m)(b—a) G-
gW' (5.3)

5.1.1. Agarwal-Dragomir’s proof

Let h(x) = a—x and g(x) = f'(x) —m, and apply Hayashi’s integral inequal-
ity (2.5), to obtain

(M—m)/bbl(a—x)dngg(M—m)/uawb(a—x)dx, (5.4)
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where ,
0= ’ (a—x)[f'(x) —m]dx
o : £(b) = f(@)~m(b—a)
1 , _ —fla)—m(b—a
x:M—_m/a[f() m]dx = L :
Since
" (a—x)dr= M(b—a—AY - (b—a)}
/b—l 2
and

a+A 2
/ (a—x)dxz—l—

the inequality (5.4) is the same as

b—a—A)*—(b—a)
2

I é(M—m)[(

Next, since

b+l M-m[ A* (b—a—A)? (b—a)
12 :T[_TJ’ 2 2 ]
_ (M-—m)[-A(b—a)] _mb—a)P (b—a)lf(b)- f(a)
2 2 2
and . ,
0= [ reax—(bo-ap) + ™=,
it follows that
'Q—M — /ubf(x)dx—(b—a)w‘. (5.6)
The inequality (5.5) implies
'Q—gl—;gz gfz;gl
_ M-—m _7L_2 (b—a)z_(b—a—l)2
2 [ > T2 2 ] 5.7)
=P -]
_ f() = fla)=m(b—a)][M(b—a) - f(b) + f(a)]

2(M —m)

Now on combining (5.6) and (5.7) we immediately obtain the inequality (5.2).
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To prove (5.3), define p(t) = —t>+ (b —a)t. It is clear that

_ 2
p(t) < p(b 3 a) _® 4a> (5.8)
forall € R.
We choose
)~ f@-mb-a)
M—m ’
so that
M—m _ f(®) = fla) —m(b—a)][M(b—a) — f(b) + f(a)]
3 p(A) = S —m) . (5.9)
From (5.8) and (5.9), we have
M—m (M —m)(b—a)?
—p(h) < R

which in view of (5.2) proves the required the inequality (5.3). O

5.1.2. Cerone-Dragomir’s proof

Let h(x) = 6 —x for 6 € [a,b] and g(x) = f/(x) —m. Then, from Hayashi’s
integral inequality (2.5), we have

L<I<U, (5.10)
where
b b
I:/a (0 —2)[f (x) — m]dx, A:ﬁ/a [F () — mdx,
b a+A
L:(M—m)/H(e—x)dx7 U:(M—m)/a+ (6—x)dx.

It is now a straightforward matter to evaluate and simplify the above expansions to give

b
1:/ Flu)du— {m(b—a)(e—b;a> +(b—6)f(b)+(0—a)f(a)}, (5.11)
1 b—a
A= 2 [f(B) ~ fla) ~mlb— ) = (5~ m), (5.12)
L= (M_m)k[l +2(6-b)], U= (M;m)l[Z(G—a)—k]. (5.13)
In addition, it may be noticed from (5.10), that
U+L U—-L
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where, upon using (5.13),

U+L b U-L M —
+ +a> and —( m)

T:(M—mm<e— . = Ab—a=1). (.15)

Equation (5.14) is then, (5.2) upon using (5.11), (5.12), and (5.15) together with some
routine simplification.

Now, for the inequality (5.3). Consider the right-hand side of (5.3). Completing
the square gives

S -munn- = (2 (252 252

and (5.3) is readily determined by neglecting the negative term. [

5.2. Qi’s integral inequality

Using Rolle’s mean value theorem, i.e., Lemma 2.1, Iyengar-Mahajani’s integral
inequality (4.1) was earlier refined by Qi in [39].

By virtue of the same techniques as that used in deduction of Lemma 2.2 itself
from Lemma 2.1, Iyengar-Mahajani’s integral inequality (4.1) was refined while Theo-
rem 3.8 was generalized by removing the hypothesis f(a) = f(b) =0 in [39].

THEOREM 5.2. ([39, Proposition 2]) Let f(x) be continuous on [a,b] and differ-
entiable in (a,b). Suppose that f(x) is not identically a constant, and that m < f'(x) <
M in (a,b). Then

fla)+f(b) f()
‘b a/f
[f(b) = fla) —m(b— a)][ (b—a)—f(b) + f(a)]
S 2(M—m)(b—a) 17
[M — So(a,b)][m— So(a,b)]
- 02(M—m) 0 (b_a>7
where
So(a,b) f(b;:i:(“) (5.18)

y(x) = [f(x) = f@)](b—a) = [f(b) - fla)](x - a),
so that y(a) = y(b) = 0. We also have y'(x) = (b—a)f'(x) — f(b) + f(a), and hence

(b—a)m—f(b)+f(a) < ¥'(x) < (b—a)M — f(b) + f(a).
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The required result (5.17) now follows from Theorem 3.8 applied to y/(x), noting that

—a2 a
[ var=p-a [ reax- LD O]

2
The proof of Theorem 5.2 is completed. [J

For convenience, the inequalities (5.2) and (5.17) are called Qi-Agarwal-Cerone-
Dragomir’s integral inequality.

5.3. An equivalent relation

n [26], Z. Liu and Y.-X. Shi proved Qi-Agarwal-Cerone-Dragomir’s integral in-
equality (5.2) and (5.17). A minor modification of their result implies an equivalent
relation between Iyengar-Mahajani’s and Qi-Agarwal-Cerone-Dragomir’s integral in-
equality.

THEOREM 5.3. Theorems 3.8, 4.1, and 5.2 are equivalent to each other. In other
words, the inequality (3.20), Iyengar-Mahajani’s integral inequality (4.1), and Qi-
Agarwal-Cerone-Dragomir’s integral inequality (5.17) are equivalent to one another:

Proof. In view of proofs of Theorems 3.8 and 5.2, as the equivalent relation be-
tween Rolle’s and Lagrange’s mean value theorems, the equivalent relation between
Theorems 3.8 and 5.2 is obvious.

Taking M = —m in (5.17) leads readily to the inequality (4.1).

Conversely, the condition m < f/(x) < M is equivalent to

m+M M—m

Fw-"E <2

Let F(x) = f(x) — 232x on [a,b]. Then [f'(x)| < %2 and M —m > 0. Utilizing
Theorem 4.1 reveals

Jdx %(b—a)[F(a)—kF(b)}‘ < (M—ng(b—a)z B [F(Zzal__F;c;)f
A direct computation shows
/bF(x)dx— L b= a)[F(a)+ F(b)]
= [ |- "5 4 So- 0| r@-+50) - "F M w40

_ / f(x)dx—E(b—a)[f(a)-i-f(b)]
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8 2(M —m)
_A{M—m)(b—a)+2[F(b) — F(a)|}{(M —m)(b—a) —2[F(b) — F(a)|}
B 8(M —m)
_ )~ (@) —m(b—a)[M(b—a) ~ 1(8) + /(a)
2(M —m)(b—a) '

The proof of Theorem 5.3 is complete. [l

5.4. Remarks

REMARK 5.1. It is well-known that an integrable function is bounded. Con-
versely, a bounded function may be not integrable. Therefore, the hypotheses in Theo-
rem 5.1 are stronger than those in Theorem 5.2.

REMARK 5.2. By using integration-by-part, under the conditions of Theorems 4. 1
and 4.2, it may be remarked that

[ 100136 as@+ o)

b b
_ / (a;b—x)f’(x)dx‘g/ a;b—x\f’(xﬂdx
b b M(b—a)?
gM/ “er —xdx=¥, (5.19)

which is obviously a much weaker inequality than Iyengar-Mahajani’s integral inequal-
ity (4.1) or (4.2).

REMARK 5.3. If letting M = —m, then (5.3) is reduced to (5.19).

REMARK 5.4. In the original papers [19, 28], the condition “not identically con-
stant” and the continuity of the integrand f(x) at the two end points of the closed
interval [a,b] in Theorems 4.1 and 4.2 were pretermitted.

REMARK 5.5. Ifletting m = —M in the inequality (5.17), then Iyengar-Mahajani’s
integral inequality (4.1) and its equivalent forms (4.2) is recovered.
REMARK 5.6. Inequalities (5.2) and (5.17) can also be rewritten as
[(b)=f(a) _ M+m

. | 2
’ 1 /abf(x)dx—f(a)—’_f(b) - (M—m)(b—a) ll_( b—a 2 )

b—a 2 h 2 4 (M —m)?
or
mM (b —a)* —2(b— a)[mf(b) - Mf(a)] +[f(b) — f(a)]*
2(M —m)

mM(b—a)® —2(b—a)Mf(b) —mf(a)] +[f(b) — f(a)?
2(M —m) ’

< /bf(x>dx< -
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REMARK 5.7. Now considering the right-hand side of (5.2) and completing the

square give
: ;&)% Y- =] [<M5m> (S‘ @> }

and (5.3) is readily determined by neglecting the negative term.

REMARK 5.8. It should also be noted that if either both m and M are positive
or both negative, then the bound obtained here is tighter than that of Iyengar as given
by (4.1).

REMARK 5.9. Till now we can see that, comparing with Agarwal-Dragomir’s
proofin [1], Qi’s proofin [39] and Cerone-Dragomir’s proof in [5] simplify the working
and, it is argued, are more enlightening. In other words, among proofs in [1, 5, 26, 39],
Qi’s proof provided in [39] is simplest and most insightful.

6. Applications of Qi-Agarwal-Cerone-Dragomir’s inequality
Qi-Agarwal-Cerone-Dragomir’s inequality in Theorem 5.1 or 5.2 has been applied
to the theory of convex functions, means, and the complete elliptic integrals.

6.1. An applications to convex functions

For a convex function f: [a,b] — R, the double inequality

() < [me 10

is well-known in literature as Hermite-Hadamard’s integral inequality. For more infor-
mation, please refer to [9, 34, 41] and references therein.

If applying f in Agarwal-Cerone-Dragomir’s integral inequality in Theorem 5.1
to a differentiable convex function, we may deduce the following theorem which is very
important in applications in the subsequent subsection.

THEOREM 6.1. ([1, Corollary 4]) Let f be a differentiable convex function on
[a,b] such that f'(a) # f'(b). Then we have

fla)+
0< 2 b a/f Jdx

Lf(B) = f(a) = f'(@) (b= a)][f'(B) (b —a) = f (D) + f(a)]
2(b—a)[f'(b) — f'(a)]

< b=a)[f'(b) — f'(a)]

< 2 :

< (6.2)

Proof. This follows from Theorem 5.1 and the observation that we can choose
m=f'(a) and M = f'(b). O
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6.2. Applications to special means

For positive numbers a and b we recall the means

a+b 2
A - — H =
@h)="30 Glab)=Vab, (@h) = T Ty
a—b 1/ bP 1/(b—a) pptl_ gptl 1/p
Lab)=——"— [Iab)=-(— L S
(@b) =1y [@P) e(aa> - Lolab) [(p+1)(b—a)]

These means are called in literature the arithmetic, geometric, harmonic, logarithmic,
identric or exponential, and generalized logarithmic means. For more detailed informa-
tion on these means, please refer to [3, 13, 16] and plenty of references therein.

Now we use Theorem 6.1 to find the following facts for the above means.

THEOREM 6.2. ([1, Proposition 1]) Let p > 1 and 0 < a < b. Then
0 < A(a?,b?) —Lﬁ(a,b)

C v (L0~ {(a,b) —aP~"] [bP~' = L~ {(a,b)]

2(p—1) L3 (a,b) (6.3)
<2201t 3 b).

Proof. By Theorem 6.1 applied to the convex function f(x) =x” for p > 1, we
have

al +bP 1 b
0< — ’d
2 b—a/ux x

O i VAo Gl Bt W i Lot
h 2p(bP=1 —aP=1)(b—a) h 8 '
From the facts that

b’ —a? = p(b—a)Ll_{(a,b) and b~ —a’ = (p—1)(b—a)Ll 3(a,b),
Theorem 6.2 follows. [

THEOREM 6.3. ([1, Proposition 2]) Let 0 < a < b. Then we have

0< L(a,b) — H(a,b) < (b_a)zL(a < E=D ) 6.4)
X bl i ~X (1+b bl ~ 4Clb bl M N

=1 on[a,b] C(0,%),
we have

Proof. By Theorem 6.1 applied to the convex function f(x)

0< l/a—zi—l/b_ lni—lna < [1/b—1/a+ (b—a)/a*|[(a—b)/b*—1/b+1/ad]

200—a)(1/d—1/5?)
g Lm0l Y)

/
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Howeyver, since
1 1 b—a (b—a)? a-b 1 1 (b—a)?
_— = = - d _ = _= —
b a + a? a?b an pr b + a ab* ’
it follows that R = 255;(_—521) . Consequently, we obtain
)2 )2
0< 1 < (b—a) <(b a) (a—i—b),
H(a,b) L(a,b) ~ 2ab(a+b) 8a2h?
which is equivalent to (6.4). [
THEOREM 6.4. ([1, Proposition 3]) Let 0 <a < b. Then
0<in I(a,b) < ab(In(a/b) + (b —a)/a][In(b/a) + (b —a)/b] ’ (b—a)z. 6.5)
G(a,b) 2(b—a)? 8ab
Proof. This follows from Theorem 6.1 applied to f(x) = —Inx. O

6.3. An application to elliptic integrals

In the paper [15], Qi’s integral inequality in Theorem 5.2 was applied to estimate
the complete elliptic integrals of the first and second kinds

/2 /2 de
E= [ Vimeateas wmd o= [~ )

forO<r<1.

THEOREM 6.5. ([15, Theorems 3 and 4]) For 0 <t < 1, we have

12
%E(t)_l+\/1 t
T 2
ovice [ 2/ Vi) (14 VI2)
< - - 6.7)
™ r(V1—12+1)V1-7?
and
2 (t)_\/l—t2+1‘
n 21-12
1-VI=7 21-VI=2)(2—P2 = VA= +1)"
<o |1 . (6.8)
n J—

(1= 2) (VA= 2+ T+ 1) (1~ V=21 1)
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Proof. For 0<t<1and 6 € [0,%],let f(0) =+/1—12sin*6 . A direct calcu-

lation yields f/(0) = —7’2513;":296 and
7(0) = _ 2(*sin* 6 —sin’ 6 +cos* 6) _ ~ sin* 6 (2 — 1 +cot' )
(1—2sin26)** (1—2sin26)**
Hence, the function f’(6) has a unique minimum
2V1-12

SV ) (V)

L = . Therefore, the maximum of f'(6) is

Y1

at @ = arctan

lim f(8)= lim f(6)=0.
oim f(8) = lim f1(6)

f(0)=1 and f(g) ey

Substituting quantities above into (5.17) and simplifying lead to (6.7).
For 0 <t <1and 6 € [0,%],let h(§) = ——L——. A straightforward calcula-

\V1-2sin? 6

Moreover, we have

2
; : / __ _t-sinBcos6
tion gives 1'(0) = (17; cin? 077 and

12 (sin® @ — cos? 6 — > sin* @ — 2¢>cos? Osin? 0)
- (l—tzsinze)s/2
2[*sin* 0 +2(1—12)sin’ 0 — 1]
(l—tzsinze)s/2 .

h//(e) —

Hence, the function #’(0) has a unique maximum

JVF AR 2 ) (1 VA2 )
2-r2—vA—+1)"?

at

VVE =21 +12 -1
; :

0 = arcsin
Therefore, the minimum of /#'(6) is

lim #(8)= lim #(6)=0.
0—071 0—(m/2)~

Moreover, we have
1

V-2
Substituting quantities above into (5.17) and simplifying lead to (6.8). The proof of
Theorem 6.5 is complete. [J

h(0)=1 and h(%):
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REMARK 6.1. In [48], the inequality (5.17) was replaced by Lupas’ integral in-
equality

‘bia/abf(ﬂg(t)dt— blTa/ubf(Z)dtﬁ/ubg(t)dt

where f’,g" € L([a,b]) and

b—a
< 7||f/||2||g/||2, (6.9)

1/2
hzz[/ahhwdr} . heLy(a.b)).

for finding some new inequalities for the complete elliptic integrals of the first and
second kinds.
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REMARK 7.1. The paper [44] is a newest article in this field, to the best of my

knowledge.
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