GENERALIZED WEIGHTED COMPOSITION OPERATORS ON WEIGHTED BERGMAN SPACES, II

XIANGLING ZHU

(Communicated by S. Stević)

Abstract. The boundedness, compactness, essential norm, Hilbert-Schmidt class and order boundedness of generalized weighted composition operators on weighted Bergman spaces are investigated in this paper.

1. Introduction

Let \(\mathbb{D} = \{ z : |z| < 1 \} \) be the unit disk of complex plane \(\mathbb{C} \) and let \(\partial \mathbb{D} \) be the boundary of \(\mathbb{D} \). Denote by \(H(\mathbb{D}) \) the class of functions analytic in \(\mathbb{D} \). For \(a \in \mathbb{D} \), \(\sigma_a(z) = \frac{a-z}{1-ar{a}z} \) is the Möbius transformation of \(\mathbb{D} \).

For a subarc \(I \subseteq \partial \mathbb{D} \), let \(S(I) \) be the Carleson box based on \(I \) with

\[
S(I) = \{ z \in \mathbb{D} : 1 - |I| \leq |z| < 1 \text{ and } \frac{z}{|z|} \in I \}.
\]

If \(I = \partial \mathbb{D} \), let \(S(I) = \mathbb{D} \). Let \(\mu \) denote a positive Borel measure on \(\mathbb{D} \). For \(0 < \alpha < \infty \), we say that \(\mu \) is an \(\alpha \)-Carleson measure on \(\mathbb{D} \) if (see [1])

\[
\sup_{I \subseteq \partial \mathbb{D}} \mu(S(I))/|I|^{\alpha} < \infty.
\]

Here and henceforth \(\sup_{I \subseteq \partial \mathbb{D}} \) indicates the supremum taken over all subarcs \(I \) of \(\partial \mathbb{D} \). \(|I| = (2\pi)^{-1} \int_I |d\xi| \) is the normalized length of the subarc \(I \). Note that \(\alpha = 1 \) gives the classical Carleson measure.

For \(0 < p < \infty \) and \(\gamma > -1 \), the weighted Bergman space, denoted by \(A^p_\gamma \), is the set of all functions \(f \in H(\mathbb{D}) \) satisfying

\[
\|f\|_{A^p_\gamma} = \int_{\mathbb{D}} |f(z)|^p dA_\gamma(z) < \infty,
\]

where \(dA_\gamma(z) = (\gamma+1)(1-|z|^2)^\gamma dA(z) \) and \(dA \) is the normalized Lebesgue area measure in \(\mathbb{D} \) such that \(A(\mathbb{D}) = 1 \). This means that \(A^p_\gamma = H(\mathbb{D}) \cap L^p(\mathbb{D}, dA_\gamma) \). When \(p = 2 \), \(A^2_\gamma \) is a Hilbert space.

Keywords and phrases: Generalized weighted composition operator, Hilbert-Schmidt, weighted Bergman space.
We denote the set of nonnegative integers by \(\mathbb{Z} \). Let \(\varphi \) be an analytic self-map of \(\mathbb{D} \), \(u \in H(\mathbb{D}) \) and \(n \in \mathbb{Z} \). The generalized weighted composition operator \(D_{\varphi,u}^n \) is defined as follows (see [34, 36]).

\[
(D_{\varphi,u}^n)(z) = u(z) \cdot f^{(n)}(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}.
\]

If \(n = 0 \), then \(D_{\varphi,u}^n \) is just the weighted composition operator, which is frequently denoted by \(uC_{\varphi} \) in the literature. When \(n = 0 \) and \(u(z) = 1 \), then \(D_{\varphi,u}^n \) is just the composition operator \(C_{\varphi} \), which is defined by

\[
(C_{\varphi}f)(z) = f(\varphi(z)), \quad f \in H(\mathbb{D}).
\]

See [2, 32] for more information about the theory of composition operators. When \(u(z) = 1 \), \(D_{\varphi,u}^n = C_{\varphi}D^n \). See, for example, [4, 7, 8, 9, 12, 18, 19, 21, 25, 31] for the study of the operator \(C_{\varphi}D^n \). See, for example, [5, 6, 10, 11, 13, 20, 22, 23, 24, 26, 27, 33, 34, 35, 36, 37] and the references therein for the study of the operator \(D_{\varphi,u}^n \). For some other product-type operators see, for example [16, 28, 29].

In [19], Stević studied the operator \(C_{\varphi}D^n \) on weighted Bergman spaces. In [30], Ueki studied the order boundedness of the operator \(uC_{\varphi} : A_{\alpha}^n \to A_{\beta}^n \). In [34], the author studied the operator \(D_{\varphi,u}^n : A_{\alpha}^n \to A_{\beta}^n \). Among others, we prove that, under the assumption that \(u \in A_{\beta}^2 \), \(D_{\varphi,u}^n : A_{\alpha}^2 \to A_{\beta}^2 \) is bounded if and only if

\[
\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |u(z)|^2 \frac{(1 - |a|^2)^{\alpha+2}}{|1 - \alpha \varphi(z)|^{2\alpha+4+2n}} dA_{\beta}(z) < \infty.
\]

\(D_{\varphi,u}^n : A_{\alpha}^2 \to A_{\beta}^2 \) is compact if and only if \(D_{\varphi,u}^n : A_{\alpha}^2 \to A_{\beta}^2 \) is bounded and

\[
\lim_{|a| \to 1} \int_{\mathbb{D}} |u(z)|^2 \frac{(1 - |a|^2)^{\alpha+2}}{|1 - \alpha \varphi(z)|^{2\alpha+4+2n}} dA_{\beta}(z) = 0.
\]

Motivated by results in [19, 30, 34], in this work we give another characterization of the boundedness, compactness and essential norm of the operator \(D_{\varphi,u}^n : A_{\alpha}^2 \to A_{\beta}^2 \). Moreover, we study the order boundedness and the Hilbert-Schmidt class of the operator \(D_{\varphi,u}^n : A_{\alpha}^2 \to A_{\beta}^2 \).

Recall that the linear operator \(T : X \to Y \) is order bounded if \(T \) maps the unit ball of \(X \) into an order interval of \(Z \), namely there exists a nonnegative element \(P \) in \(Z \) such that \(|T(f)| \leq P \) for all \(f \) belongs to the unit ball of \(X \). Here \(X \) is a quasi-Banach space and \(Y \) a subspace of quasi-Banach Lattice \(Z \).

Throughout the paper, we denote by \(C \) a positive constant which may differ from one occurrence to the next. In addition, we say that \(A \lesssim B \) if there exists a constant \(C \) such that \(A \leq CB \). The symbol \(A \approx B \) means that \(A \lesssim B \lesssim A \).

2. Boundedness and essential norm of \(D_{\varphi,u}^n : A_{\alpha}^2 \to A_{\beta}^2 \)

In this section, we give another characterization for the boundedness, compactness and essential norm of the operator \(D_{\varphi,u}^n : A_{\alpha}^2 \to A_{\beta}^2 \). Hence, we first state some lemmas which will be used in the proofs of the main results in this section.
LEMMA 2.1. [14] Let μ be a positive measure on \mathbb{D}, $m \in \mathbb{Z}$ and $-1 < \alpha < \infty$. Then μ is a bounded $2 + \alpha + 2m$-Carleson measure if and only if there is a positive constant C, depending only on α and m such that

$$\int_\mathbb{D} |f^{(m)}(z)|^2 d\mu(z) \leq C \|f\|^2_{A^2_\alpha}$$

for all $f \in A^2_\alpha$. Moreover, if μ is a bounded $2 + \alpha + 2m$-Carleson measure, then $C = C_1C_2$, where $C_1 > 0$ depends only on α and m and

$$C_2 = \sup_I \frac{\mu(S(I))}{|I|^{2+\alpha+2m}}.$$

Let $0 < s < \infty$. The bounded s-Carleson measure can be characterized by a global integral condition (see [1]), namely,

$$\sup_I \frac{\mu(S(I))}{|I|^s} \approx \sup_{|b| \geq \rho} \int_\mathbb{D} |\sigma'_b(z)|^s d\mu(z),$$

(1)

LEMMA 2.2. [15] Let $0 < \rho < 1$, $1 \leq s < \infty$ and let μ be a positive Borel measure on \mathbb{D}. Then

$$\sup_I \frac{\mu(S(I) \setminus \Delta(0, \rho))}{|I|^s} \lesssim \sup_{|b| \geq \rho} \int_\mathbb{D} |\sigma'_b(z)|^s d\mu(z),$$

where $\Delta(0, \rho) := \{z : |z| < \rho\}$.

LEMMA 2.3. [2] Let g and u be positive measurable functions on \mathbb{D}, and let φ be an analytic self-map of \mathbb{D}. Then

$$\int_\mathbb{D} (g \circ \varphi)(z)|\varphi'(z)|^2 u(z) d\Lambda(z) = \int_\mathbb{D} g(w) U(\varphi, w) d\Lambda(z),$$

where $U(\varphi, w) = \sum_{z \in \varphi^{-1}(w)} u(z)$ for $w \in \mathbb{D} \setminus \{\varphi(0)\}$.

For an $f(z) = \sum_{k=0}^{\infty} a_k z^k \in H(\mathbb{D})$, define

$$T_j f(z) = \sum_{k=0}^{j} a_k z^k, \quad R_j f(z) = \sum_{k=j+1}^{\infty} a_k z^k.$$

LEMMA 2.4. Let $m \in \mathbb{Z}$ and $-1 < \alpha < \infty$. For each $w \in \mathbb{D}$, positive integer j and $f \in A^2_\alpha$,

$$\left| (R_j f(w))^{(m)} \right| \lesssim \|f\|_{A^2_\alpha} \sum_{k=j+1}^{\infty} \frac{\Gamma(k + \alpha + 2 + m)}{k! \Gamma(\alpha + 2 + m)} |w|^k,$$

where Γ denotes the Gamma function.

Proof. Since $f \in A^2_\alpha$, it is clear that $R_j f \in A^2_\alpha$. Hence

$$(R_j f)(w) = \int_\mathbb{D} (R_j f)(z) K_\alpha(w, z) d\Lambda_\alpha(z),$$
Lemma 2.3 we have

\[(R_j f)^{(m)}(w) = \frac{\Gamma(\alpha + 2 + m)}{\Gamma(\alpha + 2)} \int_\mathbb{D} R_j f(z) \frac{\bar{z}^m}{(1 - \bar{z} w)^{\alpha + 2 + m}} dA_\alpha(z) \]

Using Hölder’s inequality, we get

\[\left| (R_j f)^{(m)}(w) \right| \leq \frac{\Gamma(\alpha + 2 + m)}{\Gamma(\alpha + 2)} \int_\mathbb{D} |f(z)| R_j \left(\frac{\bar{z}^m}{(1 - \bar{z} w)^{\alpha + 2 + m}} \right) dA_\alpha(z)\]

\[\approx \int_\mathbb{D} |f(z)| \left(\sum_{k=0}^{\infty} \frac{\Gamma(k + m + \alpha + 2)}{k! \Gamma(m + \alpha + 2)} |w|^k |z|^{k+m} \right)^2 dA_\alpha(z)\]

\[\leq \|f\|_{A_\alpha^2} \sum_{k=0}^{\infty} \frac{\Gamma(k + m + \alpha + 2)}{k! \Gamma(m + \alpha + 2)} |w|^k. \quad \Box\]

Theorem 2.1. Let \(\phi \) be an analytic self-map of \(\mathbb{D} \), \(-1 < \alpha, \beta < \infty, n \in \mathbb{Z} \) and \(u \in H(\mathbb{D}) \). Then \(D^n_{\phi, u} : A_\alpha^2 \to A_\beta^2 \) is bounded if and only if

\[\sup_{b \in \mathbb{D}} \int_\mathbb{D} |\sigma'_b(\phi(z))|^{2+\alpha+2n} |u(z)|^2 dA_\beta(z) < \infty. \quad (2)\]

Proof. First we assume that (2) holds. Let \(d\mu(z) = |u(z)|^2 dA_\beta(z) \). By (1) and Lemma 2.3 we have

\[\sup_{b \in \mathbb{D}} \frac{\mu \circ \phi^{-1}(S(I))}{|I|^{2+\alpha+2n}} \approx \sup_{b \in \mathbb{D}} \int_\mathbb{D} |\sigma'_b(w)|^{2+\alpha+2n} d\mu \circ \phi^{-1}(w) \]

\[= \sup_{b \in \mathbb{D}} \int_\mathbb{D} |\sigma'_b(\phi(z))|^{2+\alpha+2n} |u(z)|^2 dA_\beta(z) < \infty. \quad (3)\]

For any \(f \in A_\alpha^2 \), by Lemmas 2.1 and 2.3, and (3) we have

\[\|D^n_{\phi, u} f\|_{A_\beta^2}^2 \approx \int_\mathbb{D} |D^n_{\phi, u} f(z)|^2 dA_\beta(z) = \int_\mathbb{D} |f^{(n)}(w)|^2 d\mu \circ \phi^{-1} \]

\[\leq \sup_I \frac{\mu \circ \phi^{-1}(S(I))}{|I|^{2+\alpha+2n}} \|f\|_{A_\alpha^2}^2 < \infty.\]

Thus \(D^n_{\phi, u} : A_\alpha^2 \to A_\beta^2 \) is bounded.

Conversely, assume that \(D^n_{\phi, u} : A_\alpha^2 \to A_\beta^2 \) is bounded. For any \(a \in \mathbb{D} \), set

\[f_a(z) = \frac{1 - |a|^2}{(1 - \overline{a} z)^{\frac{\alpha+2}{2}}} \], \quad z \in \mathbb{D}.\]
Then \(\|f_a\|_{A^2_\alpha} \approx 1 \). Let \(I \subset \partial \mathbb{D} \), and let \(\zeta \in \partial \mathbb{D} \) be the center of arc \(I \) and \(b = (1 - |I|) \zeta \in \mathbb{D} \). Then
\[
f_b^{(n)}(z) = \frac{\Gamma(2 + \alpha + n)}{\Gamma(2 + \alpha)} \frac{(1 - |b|^2)^{\alpha + 2}}{(1 - b z)^{2 + \alpha + n}}
\]
and
\[
|f_b^{(n)}(z)|^2 \geq \frac{1}{(1 - |b|)^{2 + \alpha + 2n}}, \quad z \in S(I).
\]
Thus, by the boundedness of \(D^n_{\phi, u} : A^2_\alpha \to A^2_\beta \), we get
\[
\infty > \|D^n_{\phi, u}\|^2 \|f_b\|^2_{A^2_\alpha} \geq \|D^n_{\phi, u}f_b\|^2_{A^2_\beta} = \int_{\mathbb{D}} |f_b^{(n)}(\phi(z))|^2 |u(z)|^2 dA_\beta(z)
\]
\[
= \int_{\mathbb{D}} |f_b^{(n)}(w)|^2 d\mu \circ \phi^{-1}(w) \geq \int_{S(I)} \frac{1}{(1 - |b|)^{2 + \alpha + 2n}} d\mu \circ \phi^{-1}(w) \approx \frac{\mu \circ \phi^{-1}(S(I))}{|I|^{2 + \alpha + 2n}},
\]
for all \(I \subset \partial \mathbb{D} \). By (1) and Lemma 2.3 we have
\[
\sup_{b \in \mathbb{D}} \int_{\mathbb{D}} |\sigma'_b(\phi(z))|^{2 + \alpha + 2n} |u(z)|^2 dA_\beta(z) = \sup_{b \in \mathbb{D}} \int_{\mathbb{D}} |\sigma'_b(w)|^{2 + \alpha + 2n} d\mu \circ \phi^{-1}(w)
\]
\[
\approx \sup_I \frac{\mu \circ \phi^{-1}(S(I))}{|I|^{2 + \alpha + 2n}} < \infty.
\]
This completes the proof of this theorem. \(\square \)

Theorem 2.2. Let \(\phi \) be an analytic self-map of \(\mathbb{D} \), \(-1 < \alpha, \beta < \infty, n \in \mathbb{Z} \) and \(u \in H(\mathbb{D}) \). Suppose that \(D^n_{\phi, u} : A^2_\alpha \to A^2_\beta \) is bounded. Then
\[
\|D^n_{\phi, u}\|^2_{e_{A^2_\alpha} \to A^2_\beta} \approx T,
\]
where
\[
T := \limsup_{|b| \to 1} \int_{\mathbb{D}} |\sigma'_b(\phi(z))|^{2 + \alpha + 2n} |u(z)|^2 dA_\beta(z).
\]

Proof. First we prove that \(\|D^n_{\phi, u}\|^2_{e_{A^2_\alpha} \to A^2_\beta} \gtrsim T \). Let \(b \in \mathbb{D} \). Set
\[
f_b(z) = \left(\frac{1 - |b|^2}{(1 - b z)^2} \right)^{\alpha + 2}, \quad z \in \mathbb{D}.
\]
We have \(\|f_b\|_{A^2_\alpha} \approx 1 \) and \(f_b \to 0 \) weakly in \(A^2_\alpha \) as \(|b| \to 1 \). Thus \(\|K(f_b)\|_{A^2_\beta} \to 0 \) as \(|b| \to 1 \) for every compact operator \(K : A^2_\alpha \to A^2_\beta \). Thus,
\[
\|D^n_{\phi, u} - K\|^2_{A^2_\alpha \to A^2_\beta} \geq \limsup_{|b| \to 1} \|D^n_{\phi, u}(f_b) - K(f_b)\|^2_{A^2_\beta}
\]
\[
\geq \limsup_{|b| \to 1} \|D^n_{\phi, u}(f_b)\|^2_{A^2_\beta} - \limsup_{|b| \to 1} \|K(f_b)\|^2_{A^2_\beta} = \limsup_{|b| \to 1} \|D^n_{\phi, u}(f_b)\|^2_{A^2_\beta}
\]

Generalized weighted composition operators 1059
for every compact operator \(K : A^2_\alpha \rightarrow A^2_\beta \). By Lemma 2.3 we have

\[
\limsup_{|b| \to 1} \left\| D^n_{\varphi,u}(fb) \right\|_{A^2_\beta}^2 \approx \limsup_{|b| \to 1} \int_{|b|} \left| f^{(n)}(w) \right|^2 d\mu \circ \varphi^{-1} \\
= \limsup_{|b| \to 1} \int_{|b|} \left| \frac{\Gamma(2 + \alpha + n)(1 - |b|)^{\frac{\alpha + n}{2}}}{\Gamma(2 + \alpha)(1 - b)^{2 + \alpha + n}} \right|^2 d\mu \circ \varphi^{-1} \\
\geq \limsup_{|b| \to 1} \int_{|b|} \left| \sigma_n'(w) \right|^{2 + \alpha + 2n} d\mu \circ \varphi^{-1} = T.
\]

Therefore, from the definition of the essential norm, we obtain

\[
\left\| D^n_{\varphi,u} \right\|_{e, A^2_\alpha \rightarrow A^2_\beta}^2 = \inf \left\{ \left\| D^n_{\varphi,u} - J \right\|_{A^2_\alpha \rightarrow A^2_\beta}^2 \geq T \right\}.
\]

Next, we prove that \(\left\| D^n_{\varphi,u} \right\|_{e, A^2_\alpha \rightarrow A^2_\beta}^2 \lesssim T \). It is clear that

\[
\left\| D^n_{\varphi,u} \right\|_{e, A^2_\alpha \rightarrow A^2_\beta}^2 = \left\| D^n_{\varphi,u} (T_j + R_j) \right\|_{e, A^2_\alpha \rightarrow A^2_\beta} \leq \left\| D^n_{\varphi,u} T_j \right\|_{e, A^2_\alpha \rightarrow A^2_\beta} + \left\| D^n_{\varphi,u} R_j \right\|_{e, A^2_\alpha \rightarrow A^2_\beta}
\]

Here we used the fact that \(T_j \) is compact on \(A^2_\alpha \). Hence

\[
\left\| D^n_{\varphi,u} \right\|_{e, A^2_\alpha \rightarrow A^2_\beta} \leq \liminf_{j \to \infty} \left\| D^n_{\varphi,u} R_j \right\|_{A^2_\alpha \rightarrow A^2_\beta}.
\]

For an \(f(z) = \sum_{k=0}^\infty a_k z^k \in H(\mathbb{D}) \), by Lemma 2.3 we have

\[
\left\| D^n_{\varphi,u} \right\|_{A^2_\alpha \rightarrow A^2_\beta}^2 \leq \liminf_{j \to \infty} \left\| D^n_{\varphi,u} R_j \right\|_{A^2_\alpha \rightarrow A^2_\beta} \leq \liminf_{j \to \infty} \sup_{\left\| f \right\|_{A^2_\alpha} \leq 1} \left\| D^n_{\varphi,u} (R_j f) \right\|_{A^2_\beta}^2 \\
\approx \liminf_{j \to \infty} \sup_{\left\| f \right\|_{A^2_\alpha} \leq 1} \int_{\mathbb{D}} \left| (R_j f)^{(n)}(\varphi(z)) \right|^2 u(z)^2 \, dA_{\beta}(z)
\]

\[
= \liminf_{j \to \infty} \sup_{\left\| f \right\|_{A^2_\alpha} \leq 1} \int_{\mathbb{D}} \left| (R_j f)^{(n)}(w) \right|^2 d\mu \circ \varphi^{-1}.
\]

Let \(r \in (0, 1) \). For each \(f \in A^2_\alpha \), by Lemma 2.4 we have

\[
\int_{|w| \leq r} \left| (R_j f)^{(n)}(w) \right|^2 d\mu \circ \varphi^{-1} \\
\leq \left\| f \right\|_{A^2_\alpha}^2 \int_{|w| \leq r} \left(\sum_{k=j+1}^\infty \frac{\Gamma(k + \alpha + 2 + n)}{k! \Gamma(\alpha + 2 + n)} |w|^k \right)^2 d\mu \circ \varphi^{-1}(w)
\]

\[
\leq \left\| f \right\|_{A^2_\alpha}^2 \left(\sum_{k=j+1}^\infty \frac{\Gamma(k + \alpha + 2 + n)}{k! \Gamma(\alpha + 2 + n)} r^k \right)^2 \int_{|w| \leq r} d\mu \circ \varphi^{-1}.
\]

By the boundedness of \(D^n_{\varphi,u} : A^2_\alpha \rightarrow A^2_\beta \) is bounded, we have \(u \in A^2_\beta \). Hence by Lemma 2.3 we have

\[
\int_{|w| \leq r} d\mu \circ \varphi^{-1} = \int_{|\varphi(z)| \leq r} |u(z)|^2 \, dA_{\beta}(z) < \infty.
\]
Hence
\[
\liminf_{j \to \infty} \sup_{\|f\|_{A^2_{\alpha}} \leq 1} \int_{|w| \leq r} |(R_j f)^{(n)}(w)|^2 d\mu \circ \varphi^{-1} = 0. \tag{5}
\]

We now estimate \(\int_{|w| > r} |(R_j f)^{(n)}(w)|^2 d\mu \circ \varphi^{-1}\). By Lemmas 2.1, 2.2 and 2.3 we obtain
\[
\int_{|w| > r} |(R_j f)^{(n)}(w)|^2 d\mu \circ \varphi^{-1} \lesssim \|R_j f\|_{A^2_{\alpha}}^2 \sup_{|b| \geq r} \int_{|\Delta(0, r)|} \|\sigma_b'(w)\|^{2+\alpha+2n} d\mu \circ \varphi^{-1}
\]
\[
\lesssim \|R_j f\|_{A^2_{\alpha}}^2 \sup_{|b| \geq r} \int_{\mathbb{D}} |\sigma_b'(\varphi(z))|^{2+\alpha+2n} |u(z)|^2 dA_{\beta}(z).
\tag{6}
\]

Using (4), (5) and (6), for any \(r \in (0, 1)\) we get
\[
\|D^n_{\varphi, u}\|_{c_{A^2_{\alpha}} \to A^2_{\beta}} \leq \liminf_{j \to \infty} \sup_{\|f\|_{A^2_{\alpha}} \leq 1} \int_{|w| > r} |(R_j f)^{(n)}(w)|^2 d\mu \circ \varphi^{-1}
\]
\[
\leq \liminf_{j \to \infty} \sup_{\|f\|_{A^2_{\alpha}} \leq 1} \|R_j f\|_{A^2_{\alpha}}^2 \sup_{|b| \geq r} \int_{\mathbb{D}} |\sigma_b'(\varphi(z))|^{2+\alpha+2n} |u(z)|^2 dA_{\beta}(z)
\]
\[
\leq \sup_{|b| \geq r} \int_{\mathbb{D}} |\sigma_b'(\varphi(z))|^{2+\alpha+2n} |u(z)|^2 dA_{\beta}(z).
\]

Taking the limit as \(r \to 1\), we get the desired result. The proof is complete. \(\square\)

From Theorem 2.2, we immediately get the following result.

Theorem 2.3. Let \(\varphi\) be an analytic self-map of \(\mathbb{D}\), \(-1 < \alpha, \beta < \infty, n \in \mathbb{Z}\) and \(u \in H(\mathbb{D})\). Suppose that \(D^n_{\varphi, u} : A^2_{\alpha} \to A^2_{\beta}\) is bounded. Then \(D^n_{\varphi, u} : A^2_{\alpha} \to A^2_{\beta}\) is compact if and only if
\[
\limsup_{|b| \to 1} \int_{\mathbb{D}} |\sigma_b'(\varphi(z))|^{2+\alpha+2n} |u(z)|^2 dA_{\beta}(z) = 0.
\]

3. **Hilbert-Schmidt operator** \(D^n_{\varphi, u} : A^2_{\alpha} \to A^2_{\beta}\)

When \(\alpha = \beta = 0\), \(\acute{C}u\v{c}kovi\v{c} and Zhao\) [3] proved that \(uC_\varphi : A^2 \to A^2\) is a Hilbert-Schmidt operator if and only if
\[
\int_{\mathbb{D}} \frac{|u(z)|^2}{(1 - |\varphi(z)|^2)^2} dA(z) < \infty.
\]

In this section, we generalize the above result and study the Hilbert-Schmidt operator \(D^n_{\varphi, u} : A^2_{\alpha} \to A^2_{\beta}\). For the case \(u = 1\) see also [2]. The following result was essentially proved in [24], but since there are some minor differences and for the completeness we present a proof of it.
THEOREM 3.1. Let \(\phi \) be an analytic self-map of \(\mathbb{D} \), \(-1 < \alpha, \beta < \infty, n \in \mathbb{Z} \) and \(u \in H(\mathbb{D}) \). Assume that \(D_{\phi,u}^n : A_2^\alpha \to A_2^\beta \) is bounded. Then \(D_{\phi,u}^n : A_2^\alpha \to A_2^\beta \) is a Hilbert-Schmidt operator if and only if

\[
\int_{\mathbb{D}} \frac{|u(z)|^2}{(1 - |\phi(z)|^2)^{\alpha + 2n}} dA_\beta(z) < \infty.
\]

Proof. Let \(e_m^\alpha(z) = \sqrt{\frac{\Gamma(m + \alpha + 2)}{m! \Gamma(\alpha + 2)}} z^m \). Then \(\{e_m^\alpha\}_{m=0}^\infty \) is an orthonormal basis for \(A_2^\alpha \). We have

\[
D_{\phi,u}^n : A_2^\alpha \to A_2^\beta \quad \text{is Hilbert-Schmidt}
\]

\[
\Leftrightarrow \sum_{m=0}^\infty \|D_{\phi,u}^n(e_m^\alpha)\|_{A_2^\beta}^2 < \infty
\]

\[
\Leftrightarrow \sum_{m=0}^\infty \int_{\mathbb{D}} |u(z)|^2 |(e_m^\alpha)^{(n)}(\phi(z))|^2 dA_\beta(z) < \infty
\]

\[
\Leftrightarrow \int_{\mathbb{D}} |u(z)|^2 \sum_{m=n}^\infty \frac{\Gamma(m + \alpha + 2)}{m! \Gamma(\alpha + 2)} \left(\frac{n-1}{m-j} \right)^2 |\phi(z)|^{2m-2n} dA_\beta(z) < \infty
\]

\[
\Leftrightarrow \int_{\mathbb{D}} \frac{|u(z)|^2}{(1 - |\phi(z)|^2)^{\alpha + 2n}} dA_\beta(z) < \infty. \quad \square
\]

From the last theorem, we easily get the following result.

COROLLARY 3.1. Let \(\phi \) be an analytic self-map of \(\mathbb{D} \) such that \(\|\phi\|_\infty < 1, -1 < \alpha, \beta < \infty \) and \(n \in \mathbb{Z} \). Then for any \(u \in A_2^\alpha \), \(D_{\phi,u}^n : A_2^\alpha \to A_2^\beta \) is a Hilbert-Schmidt operator.

THEOREM 3.2. Let \(\phi \) be an analytic self-map of \(\mathbb{D} \) and \(u \in H(\mathbb{D}) \). Let \(-1 < \alpha, \beta < \infty, n \in \mathbb{Z} \) such that \(\beta > 2n - 1 + \alpha \). If

\[
\int_{\mathbb{D}} |u(z)|^2 (1 - |z|^2)^{\beta - \alpha - 2n} dA(z) < \infty,
\]

then \(D_{\phi,u}^n : A_2^\alpha \to A_2^\beta \) is a Hilbert-Schmidt operator.

Proof. From page 41 of [2], we have

\[
\frac{1 - |z|^2}{|1 - \phi(z)|^2} \leq \frac{2}{1 - |\phi(0)|} \frac{1 + |\phi(0)|}{1 - |\phi(0)|} \frac{1 + |\phi(0)|}{1 - |\phi(0)|},
\]

which implies that

\[
\int_{\mathbb{D}} \frac{|u(z)|^2 (1 - |z|^2)^\beta}{(1 - |\phi(z)|^2)^{\alpha + 2n}} dA(z)
\]

\[
\leq 2^{\alpha + 2n} \int_{\mathbb{D}} \frac{|u(z)|^2 (1 - |z|^2)^\beta}{(1 - |\phi(z)|^2)^{\alpha + 2n}} \left(\frac{1 + |\phi(0)|}{1 - |\phi(0)|} \right)^{\alpha + 2n} dA(z)
\]

\[
\lesssim \int_{\mathbb{D}} |u(z)|^2 (1 - |z|^2)^{\beta - \alpha - 2n} dA(z) < \infty.
\]
Here we use the fact that \(\frac{1+|\varphi(0)|}{1-|\varphi(0)|} \) is a constant. By Theorem 3.1, we see that \(D^n_{\varphi,u} : A^2_\alpha \to A^2_\beta \) is a Hilbert-Schmidt operator.

The above theorem gives a sufficient condition for \(D^n_{\varphi,u} : A^2_\alpha \to A^2_\beta \) to be a Hilbert-Schmidt operator for any \(\varphi \). However, when \(\varphi \) is an automorphism of \(\mathbb{D} \), we prove that this condition is also a necessary condition.

Theorem 3.3. Let \(u \in H(\mathbb{D}) \), \(-1 < \alpha, \beta < \infty\) and \(n \) be a nonnegative integer such that \(\beta > 2n - 1 + \alpha \). Assume that \(\varphi \) is an automorphism of \(\mathbb{D} \). Then \(D^n_{\varphi,u} : A^2_\alpha \to A^2_\beta \) is a Hilbert-Schmidt operator if and only if

\[
\int_{\mathbb{D}} |u(z)|^2 (1 - |z|^2)^{2n-\alpha-2}dA(z) < \infty.
\]

Proof. We only need to prove the necessary part. Suppose that \(D^n_{\varphi,u} : A^2_\alpha \to A^2_\beta \) is a Hilbert-Schmidt operator. For \(a \in \mathbb{D} \), let \(\varphi(z) = \lambda \frac{a-z}{1-\bar{a}z} \) where \(|\lambda| = 1 \). After some calculation, we have

\[
(1 - |z|^2) \geq \frac{1 - |a|}{1 + |a|} (1 - |\varphi(z)|^2).
\]

Hence by Theorem 3.1 and the fact that \(\frac{1+|a|}{1-|a|} \) is a constant, we get

\[
\int_{\mathbb{D}} |u(z)|^2 (1 - |z|^2)^{\beta-\alpha-2}dA(z) \lesssim \left(\frac{1 + |a|}{1 - |a|} \right)^{\alpha+2+2n} \int_{\mathbb{D}} \frac{|u(z)|^2 (1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha+2+2n}}dA(z) < \infty. \quad \square
\]

4. Order boundedness of \(D^n_{\varphi,u} : A^2_\alpha \to A^2_\beta \)

In this section, we investigate the order boundedness of \(D^n_{\varphi,u} : A^2_\alpha \to A^2_\beta \).

Theorem 4.1. Let \(\varphi \) be an analytic self-map of \(\mathbb{D} \), \(-1 < \alpha, \beta < \infty\), \(n \in \mathbb{Z} \) and \(u \in H(\mathbb{D}) \). The operator \(D^n_{\varphi,u} : A^2_\alpha \to A^2_\beta \) is order bounded if and only if

\[
\int_{\mathbb{D}} \frac{|u(z)|^2}{(1 - |\varphi(z)|^2)^{2+\alpha+2n}}dA_\beta(z) < \infty. \quad (7)
\]

Proof. First we assume that \(D^n_{\varphi,u} : A^2_\alpha \to A^2_\beta \) is order bounded. Then, for any \(f \in A^2_\alpha \) with \(||f||_{A^2_\alpha} \leq 1 \), there exists a nonnegative function \(g \in L^2(\mathbb{D}, dA_\beta) \) such that

\[
|D^n_{\varphi,u}f(z)| \leq g(z)
\]

for almost every \(z \in \mathbb{D} \). For any \(z \in \mathbb{D} \), set

\[
h_z(a) = \left(\frac{1 - |\varphi(z)|^2}{(1 - a\varphi(z))^2} \right)^{\frac{\alpha+2}{2}}, \quad a \in \mathbb{D}.
\]
A simple computation shows that $h_z \in A^2_\alpha$ with $\|h_z\|_{A^2_\alpha} \leq 1$. So

$$\frac{|\varphi(z)|^n|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{\alpha + 2}{2} + n}} \lesssim |D^n_{\varphi,u}h_z(z)| \leq g(z).$$

Since $g \in L^2(\mathbb{D},dA_\beta)$, the above inequality implies

$$\int_{|\varphi(z)| > 1/2} \frac{|u(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 2 + 2n}}dA_\beta(z) \lesssim \int_{\mathbb{D}} |g(z)|^2dA_\beta(z) < \infty. \quad (8)$$

On the other hand, set

$$k(z) = \frac{z^n}{\|z^n\|_{A^2_\alpha}}, \quad z \in \mathbb{D}.$$

Here

$$\|z^n\|_{A^2_\alpha} = \frac{(\alpha + 1)\Gamma(n + 1)\Gamma(\alpha + 1)}{\Gamma(n + 2 + \alpha)}.$$

It is clear that $k \in A^2_\alpha$ with $\|k\|_{A^2_\alpha} = 1$. So,

$$|u(z)| \lesssim |D^n_{\varphi,u}k(z)| \leq g(z), \quad z \in \mathbb{D}.$$

Since $g \in L^2(\mathbb{D},dA_\beta)$, the above inequality implies $u \in A^2_\beta$. Hence

$$\int_{|\varphi(z)| \leq 1/2} \frac{|u(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 2 + 2n}}dA_\beta(z) \lesssim \int_{|\varphi(z)| \leq 1/2} |u(z)|^2dA_\beta(z) < \infty. \quad (9)$$

From (8) and (9), we get

$$\int_{\mathbb{D}} \frac{|u(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 2 + 2n}}dA_\beta(z) < \infty.$$

Conversely, assume that (7) holds. By a classical estimate (see, e.g., a general point-value estimation in Lemma 5 of [17]), for any $f \in A^2_\alpha$, we have

$$|D^n_{\varphi,u}f(z)| = |u(z)| \cdot |f^{(n)}(\varphi(z))| \leq c_{n,\alpha} \frac{|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{\alpha + 2}{2} + n}}\|f\|_{A^2_\alpha}, \quad z \in \mathbb{D}, \quad (10)$$

and so

$$\|D^n_{\varphi,u}f\|_{A^2_\beta}^2 \leq c_{n,\alpha} \int_{\mathbb{D}} \frac{|u(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 2 + 2n}}dA_\beta(z) \cdot \|f\|_{A^2_\alpha}^2 < \infty.$$

Here $c_{n,\alpha}$ is a constant depending only on n and α. Therefore $D^n_{\varphi,u} : A^2_\alpha \rightarrow A^2_\beta$ is bounded.

Now take a function $f \in A^2_\alpha$ with $\|f\|_{A^2_\alpha} \leq 1$. From (10),

$$|D^n_{\varphi,u}f(z)| \leq \frac{c_{n,\alpha}|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{\alpha + 2}{2} + n}},$$
for any $z \in \mathbb{D}$. Set

$$
g = c_{n,\alpha}|u|(1 - |\varphi|^2)^{-\frac{\alpha+2}{2}-n}.
$$

Then the assumed condition implies $g \in L^2(\mathbb{D}, dA_B)$ and $g \geq 0$. Moreover, $|D_{\varphi,u}^n f| \leq g$. That is, $D_{\varphi,u}^n : A^2_\alpha \to A^2_\beta$ is order bounded. This completes the proof. \square

Acknowledgement. The authors thank the referee for his (or her) helpful comments and suggestions that led to the improvement of this paper.

REFERENCES

(Received December 22, 2018) Xiangling Zhu
Zhongshan Institute
University of Electronic Science and Technology of China
528402, Zhongshan, Guangdong, P. R. China
e-mail: jyuzxl@163.com