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WEIGHTED SHIFTS ON DIRECTED TREES WITH ONE BRANCHING

VERTEX: BETWEEN QUASINORMALITY AND PARANORMALITY

GEORGE R. EXNER, IL BONG JUNG,
EUN YOUNG LEE AND MI RYEONG LEE ∗

(Communicated by I. Perić)

Abstract. Let Tη,κ be a directed tree consisting of one branching vertex, η branches and a
trunk of length κ and let Sλλλλλ be the associated weighted shift on Tη,κ with positive weight se-
quence λλλλλ . Introduced recently was a collection of classical weighted shifts, “the i -th branching
weighted shifts” W (i) for 0 � i � η , whose weights are derived from those of Sλλλλλ by slicing the
branches of the tree Tη,κ ([9]). As a contrast contrasting to “slicing” we consider “collapsing
the branches of a tree” and define “the k -step collapsed weighted shift” S

λ̃λλλλ
(k) on Tη−k,κ for

1 � k � η − 1 so that S
λ̃λλλλ

(η−1) may become the basic branching shift W (0) . In this paper we

discuss the relationships between operator properties of Sλλλλλ such as quasinormality, subnormal-
ity, ∞ -hyponormality, p -hyponormality, and p -paranormality, and these properties for the W (i)

and S
λ̃λλλλ

(k) .

1. Introduction

Let H be an infinite dimensional complex Hilbert space and let B(H ) be
the algebra of all bounded linear operators on H . An operator T in B(H ) is
normal [resp., quasinormal, hyponormal] if T ∗T = TT ∗ [resp., (T ∗T )T = T (T ∗T ) ,
T ∗T � TT ∗ ]. An operator T in B(H ) is subnormal if T is (unitarily equivalent
to) the restriction of a normal operator to an invariant subspace. For a fixed n ∈
N, an operator T ∈ B(H ) is n -contractive [resp., n-hypercontractive] if An(T ) :=
∑n

k=0(−1)k
(n
k

)
T ∗kT k � 0 [resp., Ak(T ) � 0 for all 1 � k � n ]. It is well-known that

T is contractive subnormal if and only if T is n -contractive for all n ∈ N ([1]). For
some p > 0, an operator T in B(H ) is p-hyponormal if (T ∗T )p � (TT ∗)p ([17],
[24]). The Löwner-Heinz inequality implies that every p -hyponormal operator is q -
hyponormal for q � p ([17]). An operator T in B(H ) is ∞-hyponormal if T is p -
hyponormal for all p > 0. It is well-known that every quasinormal operator T ∈B(H )
is ∞-hyponormal. An operator T ∈ B(H ) is paranormal if

∥∥T 2x
∥∥ � ‖Tx‖2 for all

unit vectors x in H ([16], [19]). Recall that every operator T ∈ B(H ) has the

Mathematics subject classification (2020): Primary 47B37, 47B20; Secondary 05C20.
Keywords and phrases: Directed tree, weighted shift, quasinormal, subnormal, p -hyponormal, p -pa-

ranormal.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-26-37

595

http://dx.doi.org/10.7153/mia-2023-26-37


596 G. R. EXNER, I. B. JUNG, E. Y. LEE AND M. R. LEE

(unique) polar decomposition T = U |T |, where |T | = (T ∗T )1/2 and U is the par-
tial isometry with kerU = kerT and kerU∗ = kerT ∗ . For each p > 0, an opera-
tor T ∈ B(H ) is p -paranormal if ‖|T |pU |T |px‖ � ‖|T |px‖2 for all unit vectors x
in H ([14], [15]). Obviously, 1-paranormality and paranormality coincide. Every
q -paranormal operator is p -paranormal for q � p . An operator T ∈ B(H ) is nor-
maloid if ‖T‖ = r(T ) , where r(T ) is the spectral radius of T , which is equivalent to
‖Tn‖ = ‖T‖n for all n ∈ N . The following implications are well-known:

normal ⇒ quasinormal ⇒ subnormal ⇒ hyponormal
⇓ �

∞-hyponormal ⇒ p-hyponormal
(1<p<∞)

⇒ 1-hyponormal

⇓
normaloid ⇐ q-paranormal

(1<q<∞)
⇐ q-paranormal

(0<q�1)
⇐ p-hyponormal

(0<p<1)

and their converse implications do not hold in general ([4], [5], [6], [17]). There is no
implication between p -hyponormality (1 < p � ∞) and subnormality in general (see
[21, Example 8.2.4]).

Let Z [resp., Z+ , N] be the set of integers [resp., nonnegative integers, posi-
tive integers]. We write R [resp., R+, C] for the set of real [resp., nonnegative real,
complex] numbers. And we set Nk = {k,k + 1,k + 2, . . .} for k ∈ N , and Jι = {k ∈
N : k � ι} , ι ∈ Z+ , with the convention that J0 = ∅ . For a subset J of Z , we set
−J = {−k : k ∈ J} .

As a generalization of the classical weighted shifts, Jabłoński-Jung-Stochel [21]
introduced the weighted shift Sλλλλλ on a directed tree T = (V,E) , where V and E are the
sets of vertices and edges, respectively, whose definitions are given in Section 2. The
weighted shifts Sλλλλλ on directed trees Tη,κ = (Vη,κ ,Eη,κ) with one branching vertex
(see (1) and the Figure 1) have provided good information and several exotic examples
to solve open problems in operator theory (see [2], [3], [12], [21], [22], [23]). In [12]
and [13], the papers studied the subnormal completion problem for weighted shifts Sλλλλλ
on the directed trees Tη,κ = (Vη,κ ,Eη,κ) . In [9] Exner-Jung-Lee studied the branching
weighted shifts W (i) of Sλλλλλ , i ∈ Jη ∪ {0} , that are sliced from Tη,κ to analyze the
structure of Sλλλλλ and proved the following statements:

1◦ Sλλλλλ is subnormal if and only if W (i) is subnormal for i ∈ Jη ∪{0} (see a remark
above Theorem 2.1 in [9] and also [21, Corollary 6.2.2]);

2◦ Sλλλλλ is n -contractive [resp., n -hypercontractive] if and only if W (i) is n -contrac-
tive [resp., n -hypercontractive] for i ∈ Jη ∪{0} ;

3◦ if Sλλλλλ is hyponormal, then W (i) is hyponormal for i ∈ Jη ∪ {0} . However the
converse implication is not true.

We may apply this sort of study about hyponormality, subnormality, n -contrac-
tivity of Sλλλλλ and W (i) to other properties; we will use “property P” as placeholder for
such properties, so, for example we say “property P is hyponormality”, or “property P
is p -paranormality”, etc. Thus the following question arises:



WEIGHTED SHIFTS ON DIRECTED TREES 597

Q1. Suppose Sλλλλλ is a weighted shift on the directed tree Tη,κ . Is it true that if Sλλλλλ
has property P , then W (i) has property P for all i ∈ Jη ∪{0}?

As a concept complementary to that of “slicing tree”, one may consider a “col-
lapsing tree”. In this paper, we give a weighted shift Sλ̃λλλλ induced by such a directed tree
Tη−1,κ − which we call “the (first-step) collapsed weighted shift” (see Definition 2).
By repeating η − 1 times the “collapsing” method from the given weighted shift Sλλλλλ
on Tη,κ , we may obtain lastly a classical weighted shift W̃ which is called “the last-
step collapsed weighted shift” of Sλλλλλ (see Definition 2). Hence the following parallel
question arises from this notion:

Q2. Suppose Sλλλλλ is a weighted shift on the directed tree Tη,κ . Is it true that if Sλλλλλ
has property P , then the collapsed weighted shift Sλ̃λλλλ has property P?

In this paper we answer questions Q1 and Q2 for the properties of operators
between quasinormality and paranormality such as quasinormality, subnormality, ∞-
hyponormality, p -hyponormality, and p -paranormality.

The paper consists of five sections. In Section 2 we recall the notation and ter-
minology for classical weighted shifts and for weighted shifts Sλλλλλ on directed trees
Tη,κ and its sliced classical weighted shifts as in [9] and [21]. We introduce a new
definition which we call “the collapsed weighted shift.” In Section 3 we answer Q1
affirmatively when placeholder P is quasinormality, p -hyponormality (0 < p � ∞) ,
and p -paranormality (0 < p � 1) . When property P is p -paranormality (1 < p < ∞) ,
we show that the answer to Q1 is negative. In addition, we discuss the question of the
converse implication of the statement in Q1, namely “is it true that if W (i) has property
P for all i ∈ Jη ∪{0}, then Sλλλλλ has property P?” We see that the converse implication
is true when property P is quasinormality or p -paranormality (1 � p < ∞) . In Section
4 we solve Q2 when the placeholder P in Q2 is some property between quasinormality
and p -paranormality. We show that Q2 is affirmative when property P is quasinormal-
ity, subnormality, p -hyponormality (0 < p � ∞) , and p -paranormality (0 < p � 1) .
Some counterexamples showing a negative answer to the question, “is it true that if
Sλ̃λλλλ has property P , then Sλλλλλ has property P?” are given when property P is one of
properties among quasinormality, subnormality, p -hyponormality (0 < p � ∞) , and
p -paranormality (0 < p < ∞) . In Section 5, we see that if Sλλλλλ is 2-generation flat, then
the answers to Q1 and Q2 are positive as are those for the converse implications of the
statements in Q1 and Q2.

2. Preliminaries

2.1. Classical weighted shifts

We sketch here briefly some very standard notation and results for classical weighted
shifts. Recall that given a weight sequence α = {αn}∞

n=0 we define the weighted shift
Wα on �2 , equipped with the standard orthonormal basis {en}∞

n=0 , by Wα(en) = αnen+1

(and extend by linearity). For virtually all questions of interest it is sufficient to take the
αn to be strictly positive, and we do henceforth without further comment. The shift is
bounded if the αn are bounded above. The moment sequence γ = {γn}∞

n=0 of the shift
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is defined by γ0 = 1 and γn = ∏n−1
i=0 α2

i for n � 1. The subnormality and various re-
lated weak subnormalities of such shifts have been studied extensively (see, as a starting
point, [6]); for example, the hyponormality of a classical weighted shift is easily seen to
be equivalent to a non-decreasing weight sequence. Recall that a subnormal weighted
shift W has representing (Berger) probability measure μ supported on [0,‖Wα‖] (see
[18]) such that the moments of the measure are the moments of the shift:

γn =
∫

R

tn dμ(t), n = 0,1, . . . .

2.2. Weighted shifts on directed trees

In this section we recall briefly some basic terminology from [21] that will be
required in this paper. Let T = (V,E) be a directed tree, where V and E are the sets
of vertices and edges, respectively. A vertex v ∈ V is the parent of u if (v,u) ∈ E ,
and denoted by par(u) . A vertex of T which has no parent is called a root of T .
If T has a root, we denote it by root and write V ◦ = V \ {root} . Set Chi(u) =
{v ∈ V : (u,v) ∈ E} for u ∈ V . We call a member of Chi(u) a child of u . We write
V ′ = {u ∈V : Chi(u) �= ∅} . A vertex u ∈V \V ′ is called a leaf. A vertex v ∈V is said
to be a descendant of u∈V if there exists a finite sequence v0, . . . ,vn ∈V with n∈ Z+
such that v0 = v , vn = u and v j+1 = par(v j) for all j = 0, . . . ,n−1 (provided n � 1).
We let Des(V ) denote the set of all descendants of V .

For a directed tree T = (V,E) , we let �2(V ) be the usual Hilbert space of all
square summable complex functions on V with the orthonormal basis {eu}u∈V defined
by

eu(v) =

{
1 if v = u,

0 otherwise,
v ∈V.

For a family λλλλλ = {λv}v∈V◦ ⊆ C , the map ΛT is defined on functions f : V → C by

(ΛT f )(v) =

{
λv · f (par(v)) if v ∈V ◦,
0 if v = root.

Then we can define the operator Sλλλλλ in �2(V ) with domain

D(Sλλλλλ ) = { f ∈ �2(V ) : ΛT f ∈ �2(V )}
by

Sλλλλλ f = ΛT f , f ∈ D(Sλλλλλ ).

The operator Sλλλλλ is called a weighted shift on the directed tree T with weights {λv}v∈V◦
([21]). In particular, if Sλλλλλ ∈ B(�2(V )) , then

Sλλλλλ eu = ∑
v∈Chi(u)

λvev, u ∈V, and ‖Sλλλλλ‖ =
(

sup
u∈V

∑
v∈Chi(u)

|λv|2
)1/2

.

(See [21] for more information concerning this notion.) Recall that a weighted shift Sλλλλλ
has the unitary equivalence property ([21, Theorem 3.2.1]), and also that if λu = 0 for
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some u∈V ◦ , then Sλλλλλ can be decomposed into two nonzero weighted shifts on subtrees
of T ([21, Theorem3.1.6]). To study the structure of Sλλλλλ , we therefore usually consider
positive real values for the weights {λv}v∈V◦ of Sλλλλλ .

We now introduce a particular directed tree with one branching vertex which is
the main model of this paper. Given η ∈ N2 and κ ∈ Z+ , we define the directed tree
Tη,κ = (Vη,κ ,Eη,κ ) by (see Figure 1) 1

Vη,κ = {−k : k ∈ Jκ}�{0}�{(i, j) : i ∈ Jη , j ∈ N},
Eκ = {(−k,−k+1) : k ∈ Jκ}, (1)

Eη,κ = Eκ �{(0,(i,1)) : i ∈ Jη}�{((i, j),(i, j +1)) : i ∈ Jη , j ∈ N}.
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Figure 1: Description of the directed tree Tη ,κ .

Throughout this paper we only deal with bounded weighted shifts Sλλλλλ on di-
rected trees Tη,κ = (Vη,κ ,Eη,κ) with positive weights λλλλλ = {λv}v∈V ◦

η,κ
, where

η ∈ N2 and κ ∈ Z+ , unless we specify otherwise.

2.3. Slicing trees and branching shifts

Suppose η ∈ N2 and κ ∈ Z+ . For Sλλλλλ we first recall the definition of branching
shifts for the discussion of Q1.

DEFINITION 1. ([9]) Let Tη,κ = (Vη,κ ,Eη,κ) be the directed tree as in Figure 1
and let Sλλλλλ be a weighted shift on Tη,κ with positive weights λλλλλ = {λv}v∈V◦

η,κ
. In

what follows we assume κ ∈ Z+ and η ∈ N2 . We consider the i-th branching shifts
W (i) which are sliced from the weighted shift Sλλλλλ on Tη,κ as follows: let W (i) be the
classical weighted shift with the weight sequence ααααα(i) given by

ααααα(i) : λi,2, λi,3, λi,4, λi,5, . . . , i ∈ Jη ,

1The notation “�” denotes the pairwise disjoint union of sets.
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under the order of branches as in Figure 2. As well, let W (0) be the classical weighted

shift with the weight sequence ααααα(0) = {α(0)
j }∞

j=−κ+1 given by

α(0)
j = λ j, j ∈ (−Jκ−1)∪{0}, provided κ ∈ N, (2)

α(0)
1 :=

(
∑
i∈Jη

λ 2
i,1

)1/2
, α(0)

j+1 :=

⎛⎜⎝ ∑
i∈Jη

∏
k∈Jj+1

λ 2
i,k

∑
i∈Jη

∏
k∈Jj

λ 2
i,k

⎞⎟⎠
1/2

, j ∈ N. (3)

We say that W (0) is the basic (sliced ) branching shift of Sλλλλλ . For our convenience, we
say that “W (i) is the i-th (sliced ) branching shift of Sλλλλλ for i ∈ Jη ∪{0}”.

Figure 2: The illustration of W (i) of Sλλλλλ for i ∈ Jη ∪{0} .

2.4. Collapsing trees and collapsed shifts

Suppose η ∈ N2 and κ ∈ Z+ . Let Sλλλλλ be a weighted shift on a directed tree
Tη,κ with weights λλλλλ = {λv}v∈V◦

η,κ . As a concept opposite to that of “slicing tree”, we
consider the collapsed tree of Tη,κ as in Figure 3, and introduce a new definition of the

collapsed weighted shift Sλ̃λλλλ with weights {λ̃v}v∈V◦
η−1,κ

as in Definition 2. Consider a
tree and operator Sλ̃λλλλ with weights as in Figure 3.
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Figure 3: The illustration of the collapsing tree Tη−1,κ with weights of {λ̃v}v∈V ◦
η−1,κ

.

DEFINITION 2. Let Sλ̃λλλλ be the weighted shift on the directed tree Tη−1,κ with

weights λλλλλ = {λ̃v}v∈V◦
η−1,κ

which are given by

λ̃η−1,1 :=
(
λ 2

η−1,1 + λ 2
η,1

)1/2
, (4)

λ̃η−1, j :=

⎛⎜⎜⎜⎝
η
∑

i=η−1
∏

k∈Jj

λ 2
i,k

η
∑

i=η−1
∏

k∈Jj−1

λ 2
i,k

⎞⎟⎟⎟⎠
1/2

, j ∈ N2, (5)

λ̃v := λv, otherwise. (6)

We say that Sλ̃λλλλ is the first-step collapsed weighted shift of Sλλλλλ . Collapsing the (η −1)-

th branch with weights {λ̃η−1, j} j∈N and the (η−2)-th branch with weights {λη−2, j} j∈N

again, we may obtain the second-step collapsed weighted shift, say S
λ̃λλλλ

(2) , of Sλ̃λλλλ sim-

ilarly. Repeating (η − 1)-steps from Sλλλλλ , we obtain a classical weighted shift W̃ :=
S

λ̃λλλλ
(η−1) :

Sλλλλλ −→ Sλ̃λλλλ −→ S
λ̃λλλλ

(2) −→ ·· · −→ S
λ̃λλλλ

(η−1) = W̃ .

We say that W̃ is the last-step collapsed (classical) weighted shift of Sλλλλλ .

It is worth mentioning that the last-step collapsed weighted shift W̃ and basic
branching shift W (0) of Sλλλλλ coincide (see Corollary 20).
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3. Slicing branching shifts and properties

It follows from [22, Proposition 3.1] that if Sλλλλλ ∈ B(�2(V )) is a weighted shift on
a directed tree T with weights {λv}v∈V◦ , then

Sλλλλλ ∈ B(�2(V )) is normal if and only if there exists a sequence {un}n∈Z ⊂ V
such that un−1 = par(un) and

∣∣λun−1

∣∣ = |λun | for all n ∈ Z , and λv = 0 for
all v ∈V \ {un : n ∈ Z} .

The above statement says that no nonzero weighted shift Sλλλλλ acting on Tη,κ with κ < ∞
can be normal, so we study only weak normalities of Sλλλλλ ∈ B(�2(Vη,κ)) such as quasi-
normality, ∞-hyponormality, p -hyponormality (p > 0) and p -paranormality (p > 0) .

3.1. Quasinormality

Let Sλλλλλ be a weighted shift on Tη,κ with weights λλλλλ = {λv}v∈V◦
η,κ . We first recall

a condition equivalent to quasinormality of Sλλλλλ from [21, Proposition 8.1.7].

P1. A weighted shift Sλλλλλ on Tη,κ is quasinormal if and only if ‖Sλλλλλeu‖ = ‖Sλλλλλev‖
for all u ∈V and v ∈ Chi(u), which is equivalent to the following condition:

λ 2
v = ∑

i∈Jη

λ 2
i,1, v ∈V ◦

η,κ\{(i,1)}i∈Jη . (7)

PROPOSITION 3. Let Sλλλλλ be a weighted shift on Tη,κ with weights λλλλλ = {λv}v∈V◦
η,κ .

Then Sλλλλλ is quasinormal if and only if every i-th branching shift W (i) is quasinormal
for i ∈ Jη ∪{0} .

Proof. Suppose that Sλλλλλ is quasinormal. By (7), all weights of W (i) are constant
for i∈ Jη . Thus W (i) is obviously quasinormal. And now we consider the basic branch-

ing shift W (0) with weight sequence ααααα(0) = {α(0)
j }∞

j=−κ+1 as in (2) and (3). According

to P1, we obtain that α(0)
1 = α(0)

j for j ∈ (−Jκ−1)∪{0} (provided κ ∈ N), and

α(0)
j+1 =

⎛⎜⎝ ∑
i∈Jη

∏
k∈Jj+1

λ 2
i,k

∑
i∈Jη

∏
k∈Jj

λ 2
i,k

⎞⎟⎠
1/2

(7)
=

⎛⎜⎝ ∑
i∈Jη

λ 2
i,1( ∑

i∈Jη
λ 2

i,1)
j

∑
i∈Jη

λ 2
i,1( ∑

i∈Jη
λ 2

i,1) j−1

⎞⎟⎠
1/2

=
(

∑
i∈Jη

λ 2
i,1

)1/2
= α(0)

1 , j ∈ N,

which shows that W (0) is quasinormal.
Conversely, we suppose that every i-th branching weighted shift W (i) is quasinor-

mal for i ∈ Jη ∪{0} . Since the weights of W (i) are constant for each i∈ Jη ∪{0} , their
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expressions are given by

λv =
(

∑
i∈Jη

λ 2
i,1

)1/2
, v ∈ (−Jκ−1)∪{0},

α(0)
j+1 =

⎛⎜⎝ ∑
i∈Jη

∏
k∈Jj+1

λ 2
i,k

∑
i∈Jη

∏
k∈Jj

λ 2
i,k

⎞⎟⎠
1/2

=
(

∑
i∈Jη

λ 2
i,1

)1/2
, j ∈ N, (8)

λi,2 = λi, j, i ∈ Jη , j ∈ N2. (9)

By applying (8) with j = 1,2, and also (9) with j = 3, we have(
∑
i∈Jη

λ 2
i,1λ 2

i,2

)2
=
(

∑
i∈Jη

λ 2
i,1

)(
∑
i∈Jη

λ 2
i,1λ 4

i,2

)
, (10)

which implies that

∑
1�k<l�η

λ 2
k,1λ 2

l,1(λ
2
l,2−λ 2

k,2)
2

=
(

∑
i∈Jη

λ 2
i,1

)(
∑
i∈Jη

λ 2
i,1λ 4

i,2

)
− ∑

i∈Jη

λ 2
i,1λ 2

i,2λ 2
i,1λ 2

i,2− ∑
1�k<l�η

2λ 2
k,1λ 2

k,2λ 2
l,1λ 2

l,2

=
(

∑
i∈Jη

λ 2
i,1

)(
∑
i∈Jη

λ 2
i,1λ 4

i,2

)
−
(

∑
i∈Jη

λ 2
i,1λ 2

i,2

)2 (10)
= 0.

Therefore λ1,2 = λk,2 for all k ∈ Jη . Applying these equalities to the right two terms

of (8) with j = 1, we get
(

∑i∈Jη λ 2
i,1

)1/2
= λk,2 for all k ∈ Jη . Hence Sλλλλλ satisfies (7),

which completes the proof. �

3.2. p -hyponormality

We now discuss the relationship for p -hyponormality of Sλλλλλ and its i-th branching
shift W (i) , i ∈ Jη ∪{0} . The following theorem answers question Q1 when property P
is p -hyponormality (p > 0) .

THEOREM 4. Suppose p > 0 . If Sλλλλλ is a p-hyponormal weighted shift on Tη,κ
with weights λλλλλ = {λv}v∈V◦

η,κ , then every i-th branching shift W (i) is p-hyponormal for
i ∈ Jη ∪{0} .

The following corollary comes immediately from applying Theorem 4 with all
p > 0.

COROLLARY 5. If Sλλλλλ is ∞-hyponormal, then every i-th branching shift W (i) is
∞-hyponormal for i ∈ Jη ∪{0} .
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To prove Theorem 4, we recall a condition equivalent to p -hyponormality of Sλλλλλ
from [21, Corollary 8.2.3] as follows.

P2. Suppose p > 0. A weighted shift Sλλλλλ on Tη,κ with weights λλλλλ = {λv}v∈V◦
η,κ is

p-hyponormal if and only if the following four conditions hold:

(i) λ−(k+1) � λ−k for k ∈ Jκ−2∪{0} , if κ ∈ N2,

(ii) λ 2
0 � ∑

i∈Jη
λ 2

i,1 , if κ ∈ N,

(iii)
(

∑
i∈Jη

λ 2
i,1

)p−1(
∑

i∈Jη

λ 2
i,1

λ 2p
i,2

)
� 1,

(iv) λi, j � λi, j+1 for i ∈ Jη and j ∈ N2.

Note that a classical weighted shift is p -hyponormal ( p > 0) if and only if the
weights are non-decreasing.

We introduce an elementary inequality for the proof of Theorem 4.

LEMMA 6. Let a,b, and p be positive real numbers. Then it holds that

(bpx+ap(1− x))1/p � ab
ax+b(1− x)

, 0 � x � 1.

Proof. If a = b , then the result is obvious. Without loss of generality, we assume
that a > b . Define a real function f on [0,1] by

f (x) = (bpx+ap(1− x))(ax+b(1− x))p−apbp.

We will claim f (x) � 0 for x in [0,1] . Differentiating the function f , we can obtain
that

F(x) :=
d
dx

f (x) = (b+(a−b)x)p−1 · (Ax+B)

with
A = −(a−b)(ap−bp)(1+ p); B = (bp−ap)b+(a−b)pap.

Observe that f (0) = f (1) = 0. For our purpose, we fix b > 0 and p > 0 and consider
two real valued functions φ and ψ on R+ defined by φ(a) = B and ψ(a) = A+B ,
where we now view a as an independent variable. Some elementary computations
show that

φ(b) = ψ(b) = 0,
d
da

φ(a) = p(p+1)ap−1(a−b),

and
d
da

ψ(a) = −(p+1)(ap−bp),

which implies that φ(a) > 0 and ψ(a) < 0 for a > b , and so F(0) > 0 and F(1) < 0.
Since f has the unique critical point on (0,1) at x = −B

A , we can see that f (x) � 0 on
[0,1] . The proof is complete. �

Before proving Theorem 4, we consider first the case η = 2.
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PROPOSITION 7. Suppose p> 0 . If Sλλλλλ is a p-hyponormalweighted shift on T2,κ
with weights λλλλλ = {λv}v∈V◦

2,κ
, then every i-th branching shift W (i) is p-hyponormal,

i = 0,1,2 .

Proof. Since Sλλλλλ is p -hyponormal, the conditions (i)–(iv) of P2 hold. By P2(iv),
it is obvious that W (1) and W (2) are p -hyponormal. Recall that W (0) is p -hyponormal
if and only if

λ−κ+1 � λ−κ+2 � · · · � λ0, (11)

λ 2
0 � λ 2

1,1 + λ 2
2,1, (12)

(λ 2
1,1 + λ 2

2,1)
2 � λ 2

1,1λ 2
1,2 + λ 2

2,1λ 2
2,2, (13)(

∑
i∈J2

∏
k∈Jj+1

λ 2
i,k

)2
�
(

∑
i∈J2

∏
k∈Jj

λ 2
i,k

)(
∑
i∈J2

∏
k∈Jj+2

λ 2
i,k

)
, j ∈ N. (14)

Clearly, (11) [resp., (12)] is a condition equivalent to P2(i) [resp., P2(ii)] for η = 2.
Applying the Cauchy-Schwarz inequality (with ∏k∈Jj

λi,k and λi, j+1 ∏k∈Jj+1
λi,k ) and

using P2(iv), we see that the inequality (14) holds. The only question is whether we
may obtain (13).

Observe first that for any θ ∈C\{0} , T ∈B(H ) is p -hyponormal if and only if
θT is p -hyponormal, and check that conditions (i)–(iv) of P2 are unaffected by scaling;
the only one not completely obvious is P2(iii). Obviously, W (0) is p -hyponormal if and
only if θW (0) is p -hyponormal for θ > 0. So our first step is to scale the weights of
W (0) so that

α(0)
1 = (λ 2

1,1 + λ 2
2,1)

1/2 = 1.

Then P2(iii) becomes
λ 2

1,1

λ 2p
1,2

+
λ 2

2,1

λ 2p
2,2

� 1 (15)

and (13) becomes
1 � λ 2

1,1λ 2
1,2 + λ 2

2,1λ 2
2,2. (16)

Lemma 6, with a = λ 2
1,2 , b = λ 2

2,2 and x = λ 2
1,1 (so 1− x = λ 2

2,1 ), says that

1

(λ 2
1,1λ 2

1,2 + λ 2
2,1λ 2

2,2)p
�

λ 2
1,1

λ 2p
1,2

+
λ 2

2,1

λ 2p
2,2

. (17)

Using (15) and (17), we can obtain the inequality in (16), and thus (13) holds. Hence
the proof is complete. �

The proof of Theorem 4 which is generalized from Proposition 7 will appear in
Subsection 4.3.

We now give a useful equivalent condition for ∞-hyponormality of Sλλλλλ which will
be used later in the paper.
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PROPOSITION 8. Let Sλλλλλ be a weighted shift on Tη,κ with weights λλλλλ = {λv}v∈V◦
η,κ .

Then Sλλλλλ is ∞-hyponormal if and only if the conditions (i), (ii) and (iv) of P2 hold, and
also the following inequality holds:

c := ∑
i∈Jη

λ 2
i,1 � min

i∈Jη
{λ 2

i,2}. (18)

Proof. It is enough to show that condition P2(iii) for all p > 0 is equivalent to
condition (18). Suppose P2(iii) holds for any p > 0. For the contrary, we suppose that

c > λ 2
k,2 for some k ∈ Jη . Take p > 0 satisfying

λ 2
k,1
c

(
c

λ 2
k,2

)p

> 1. Then we can see

that (
∑
i∈Jη

λ 2
i,1

)p−1
(

∑
i∈Jη

λ 2
i,1

λ 2p
i,2

)
= ∑

i∈Jη

λ 2
i,1

c

(
c

λ 2
i,2

)p

= ∑
i∈Jη\{k}

λ 2
i,1

c

(
c

λ 2
i,2

)p

+
λ 2

k,1

c

(
c

λ 2
k,2

)p

> 1,

which contradicts P2(iii).

Conversely, suppose that c � λ 2
i,2 for all i ∈ Jη . Obviously

(
c

λ 2
i,2

)p
� 1 for all

i ∈ Jη and p > 0. Then(
∑
i∈Jη

λ 2
i,1

)p−1
(

∑
i∈Jη

λ 2
i,1

λ 2p
i,2

)
= ∑

i∈Jη

λ 2
i,1

c

(
c

λ 2
i,2

)p

� ∑
i∈Jη

λ 2
i,1

c
= 1, p > 0,

i.e., P2(iii) holds for all p > 0. Hence the proof is complete. �

3.3. p -paranormality

We discuss the relationship of p -paranormality between the weighted shift Sλλλλλ and
its i-th branching shift W (i) , i ∈ Jη ∪{0} , in this subsection. The following condition
equivalent to p -paranormality of Sλλλλλ comes from [10, Theorem 6.5].

P3. Suppose that p > 0 . A weighted shift Sλλλλλ on Tη,κ with weights λλλλλ = {λv}v∈V◦
η,κ

is p-paranormal if and only if

∑
v∈Chi(u)

λ 2
v ‖Sλλλλλλλλλλλλλλλλλλλλλλλλλ ev‖2p � ‖Sλλλλλ eu‖2p+2, u ∈Vη,κ ,

which is equivalent to the three conditions ( i) , ( ii) , and ( iv) of P2, and with the
further inequality: (

∑
i∈Jη

λ 2
i,1

)p+1
� ∑

i∈Jη

λ 2
i,1λ 2p

i,2 . (19)

Recall that p -paranormality for classical weighted shifts reduces to monotonicity
of weights for p > 0.

We answer Q1 when property P is p -paranormality for 0 < p � 1.
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PROPOSITION 9. Let Sλλλλλ and W (i) (i ∈ Jη ∪{0}) be as usual. Suppose 0 < p �
1 . If Sλλλλλ is p-paranormal, then the i-th branching shift W (i) is p-paranormal for
i ∈ Jη ∪{0} .

Proof. It holds obviously that every W (i) is p -paranormal ( p > 0) for i∈ Jη ∪{0}
if and only if three conditions (i), (ii) and (iv) of P2 hold as well as the following:(

∑
i∈Jη

λ 2
i,1

)2
� ∑

i∈Jη

λ 2
i,1λ 2

i,2. (20)

This means that the above equivalent conditions for p -paranormality of W (i) , i ∈ Jη ∪
{0} , coincide with the equivalent conditions for 1-paranormality of Sλλλλλ . Thus, if Sλλλλλ
is p -paranormal for 0 < p � 1 (therefore it is 1-paranormal), then it is obvious that
every i-th branching shift W (i) , i ∈ Jη ∪ {0} , is p -paranormal. Hence the proof is
complete. �

Note that if p > 1 in Proposition 9, the above statement is no longer true: see
Subsection 3.4.

In the proof of Proposition 9, we can see that Sλλλλλ is 1-paranormal if and only
if W (i) is p -paranormal, i ∈ Jη ∪ {0} , for any [some] p > 0. Hence we obtain the
following remark.

REMARK 10. Suppose p � 1. If every i-th branching shift W (i) , i ∈ Jη ∪{0} , is
p -paranormal, then Sλλλλλ is 1-paranormal, hence p -paranormal. However this assertion
is not true in the case of 0 < p < 1: see Subsection 3.4.

The following comes immediately from Proposition 9 and Remark 10.

COROLLARY 11. Let Sλλλλλ and W (i) (i ∈ Jη ∪{0}) be as usual. Then Sλλλλλ is para-
normal if and only if every i-th branching shift W (i) is paranormal for i ∈ Jη ∪{0} .

3.4. Examples for relationships

In the previous subsections, we discussed some relationships between the two con-
ditions below:

(C1 ) Sλλλλλ has property P ,

(C2 ) W (i) has property P for all i ∈ Jη ∪{0} .

In this subsection we discuss the implications between (C1 ) and (C2 ) with some
explicit examples.

Consider a weighted shift Sλλλλλ on T2,1 with weights λλλλλ = {λv}v∈V◦
2,1

such that

λ0 = 1, λ1,1 =
√

x, λ2,1 =
√

y and λ1, j =
√

u, λ2, j =
√

v for j ∈ N2, where x , y ,
u , and v are positive real variables. We denote this shift, here and subsequently, by
Sλλλλλ (u,v,x,y) ; further, let W (0)(u,v,x,y) be the associated basic (sliced) branching shift
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of Sλλλλλ (u,v,x,y) . According to Definition 1, we obtain the following sequences ααααα(i),
i = 0,1,2:

ααααα(0) : 1,
√

x+ y,

√
ux+ vy
x+ y

,

√
u2x+ v2y
ux+ vy

,

√
u3x+ v3y
u2x+ v2y

, · · · , (21)

ααααα(1) :
√

u,
√

u,
√

u, · · · ,
ααααα(2) :

√
v,
√

v,
√

v, · · · .

Using the equivalent conditions in the previous subsections, we discuss operator prop-
erties of this weighted shift Sλλλλλ on T2,1 with weights λλλλλ = {λv}v∈V◦

2,1
.

Quasinormality. By P1, we obtain easily that
(i) Sλλλλλ is quasinormal ⇔ 1 = u = v = x+ y,
(ii) W (0) is quasinormal ⇔ 1 = u = v = x+ y , i.e., W (0) is the unilateral shift of

multiplicity one. Note that W (1) and W (2) are always quasinormal.

Subnormality. Consider μ1 = δu and μ2 = δv , where δx := δ{x} denotes the usual
Dirac measure. Obviously the measure μi above is the representing Berger measure
for the branching shift W (i), i = 1,2, respectively. To find equivalent conditions for
subnormality of the basic branching shift W (0) , we first assume that W (0) is subnormal.
Consider

α ′ :
√

ux+ vy
x+ y

,

√
u2x+ v2y
ux+ vy

,

√
u3x+ v3y
u2x+ v2y

, · · · ,

and let Wα ′ be the weighted shift corresponding to the weight sequence α ′ . Then
Wα ′ is a bounded subnormal weighted shift with the corresponding Berger measure
μ = x

x+yδu + y
x+y δv . Since W (0) is a 2-step backward subnormal extension of Wα ′ , it

follows from [7, Theorem 3.5] (see also [8, Theorem 5.3] and [21, Corollary 6.2.2])
that ∫

R+

1
t

dμ = 1 and
∫

R+

1
t2

dμ � 1,

which implies that x
u2 + y

v2 � 1 and x
u + y

v = 1. Conversely, if the two conditions just
before this sentence hold, the measure ν given by

ν(σ) =
(
1−
( x

u2 +
y
v2

))
δ0 (σ)+

x
u2 δu (σ)+

y
v2 δv (σ) , σ ∈ B(R+),

where B(R+) is the family of Borel subsets of R+ , is the Berger measure associated
to W (0) , which can be confirmed by computing the following moment equations:

γn =
∫

R+
tndν(t) =

⎧⎨⎩
1, n = 0,
1, n = 1,
un−2x+ vn−2y, n � 2.

Therefore we can see that the following assertion holds.
(i) W (0) is subnormal if and only if x

u2 + y
v2 � 1 and x

u + y
v = 1.
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Observe that the Borel probability measures μ1,μ2 and ν satisfy Corollary 6.2.2 (ii-b)
in [21]. Thus we obtain the following assertion.

(ii) Sλλλλλ is subnormal if and only if x
u2 + y

v2 � 1 and x
u + y

v = 1.

p-hyponormality. According to P2 and Proposition 8, we get the following asser-
tions.

(i) For p > 0, Sλλλλλ is p -hyponormal if and only if 1 � x + y and x
up + y

vp �
(x+ y)1−p .

(ii) Sλλλλλ is ∞-hyponormal if and only if 1 � x+ y � min{u,v} .
(iii) For p > 0, W (0) is p -hyponormal if and only if 1 � x + y and ux + vy �

(x+ y)2 . Recall that every classical hyponormal weighted shift is p -hyponormal for
any p ∈ (0,∞)∪{∞} .

To show that the converse implication of the statement in Proposition 7 is not true,
we consider Sλλλλλ = Sλλλλλ (u,v,x,y) and W (0) = W (0)(u,v,x,y) as at the start of Subsection
3.4 with x = y = 1. Then we obtain the following:

(i ′ ) for p > 0, Sλλλλλ (u,v,1,1) is p -hyponormal if and only if

v � u(
2( u

2)p−1
)1/p

,

(ii ′ ) Sλλλλλ (u,v,1,1) is ∞-hyponormal if and only if 2 � min{u,v} ,
(iii ′ ) W (0)(u,v,1,1) is p -hyponormal if and only if v � 4−u .

By (i ′ ), (ii ′ ) and (iii ′ ), we obtain Figure 4 and may confirm that the converse implica-
tion of the statement of Proposition 7 is not true.

Figure 4: Regions of p-hyponormality of Sλλλλλ and W (0) when x = y = 1 .

p-paranormality. Using P3, we can see that the following statements hold.
(i) For p > 0, Sλλλλλ is p -paranormal if and only if 1 � x + y and upx + vpy �

(x+ y)p+1 .
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(ii) For p > 0, W (0) is p -paranormal if and only if W (0) is p -hyponormal, or
equivalently 1 � x+ y and ux+ vy � (x+ y)2 .

Again with Sλλλλλ = Sλλλλλ (u,v,x,y) and W (0) =W (0)(u,v,x,y) , to show that

(C2) �⇒ (C1) for 0 < p < 1 and (C1) �⇒ (C2) for 1 < p < ∞ when
property P is p -paranormality,

(22)

we consider Sλλλλλ (u,v,1,1) . Then we obtain

(i ′ ) for p > 0, Sλλλλλ (u,v,1,1) is p -paranormal if and only if v �
(
2p+1−up

)1/p
,

(ii ′ ) for p > 0, W (0)(u,v,1,1) is p -paranormal if and only if W (0) is p -hyponormal,
or equivalently v � 4−u .

The regions of p -paranormality of Sλλλλλ (u,v,1,1) are described in Figure 5. One
can find many counterexamples in Figure 5 to conclude as in (22).

Figure 5: Regions of p-paranormality of Sλλλλλ and W (0) with x = y = 1 .

Summary. Summarizing results for solutions of Q1 in Section 3, we organize them
in a table.

Property P (C1) ⇒ (C2) (C2) ⇒ (C1)

quasinormal True True
subnormal True True
∞-hyponormal True False
p-hyponormal (p > 0) True False
p-paranormal (0 < p < 1) True False
1-paranormal True True
p-paranormal (1 < p < ∞) False True

Table 3.1.
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3.5. Remarks

There are various classes of weak hyponormal operators other than the operator
classes that are considered above, such as absolutely p -paranormal, class A(p) , and
normaloid operators in B(H ) . An operator T ∈ B(H ) is a class A(p) operator if
(T ∗ |T |2p T )1/(p+1) � |T |2 for p > 0, where |T | = (T ∗T )1/2 . For p > 0, an operator
T is absolutely p-paranormal if ‖|T |p Th‖ � ‖Th‖p+1 for all unit vectors h ∈ H . It
is well-known that the following implications hold for any p > 0 (see [17], [25]):

• p -hyponormal ⇒ class A(p) ⇒ absolutely p -paranormal ⇒ normaloid;

• p -paranormal ⇒ absolutely p -paranormal (when 0 < p < 1) ;

• class A(p) ⇒ absolutely p -paranormal ⇒ p -paranormal (when 1 < p < ∞) ;

the relationships among these classes have been studied by several operator theorists
(see [4], [5], [11], [14], [15], [17], [25], etc.). The following remark provides informa-
tion about these operator properties of Sλλλλλ ∈ B(�2(Vη,κ)) .

REMARK 12. Let Sλλλλλ be a weighted shift on Tη,κ with weights {λv}v∈V◦
η,κ . It

follows from [10, Remark 6.6] that Sλλλλλ is p -paranormal if and only if Sλλλλλ is abso-
lutely p -paranormal, or equivalently that Sλλλλλ is a class A(p) operator for p > 0.
Thus Sλλλλλ is an absolutely p -paranormal [or, a class A(p)] operator if and only if
∑v∈Chi(u) λ 2

v ‖Sλλλλλev‖2p � ‖Sλλλλλeu‖2p+2 , u ∈Vη,κ .

Recall that the largest class among classes of operators mentioned in the dia-
gram in Section 1 is that of normaloid operators. It is natural to study whether Sλλλλλ
is normaloid. The following remark provides some information to characterize Sλλλλλ nor-
maloid.

REMARK 13. Let Sλλλλλ be a weighted shift on T = (V,E) with weights λλλλλ =
{λv}v∈V◦ . To characterize Sλλλλλ normaloid we will compare

∥∥Sn
λλλλλ
∥∥ and ‖Sλλλλλ‖n for n∈ N .

It follows from [21, Lemma 6.1.1] that

Sn
λλλλλ eu = ∑

v∈Chi〈n〉(u)

λu|vev, u ∈V, n ∈ Z+, (23)

where

λu|v =
{

1, if v = u,

∏n−1
j=0 λpar j(v), if v ∈ Chi〈n〉 (u) , n � 1.

Set Ĉn := supu∈V ∑v∈Chi〈n〉(u)

∣∣λu|v
∣∣2 for n∈ N . To obtain a standard formula for

∥∥Sn
λλλλλ
∥∥ ,

take f ∈ �2(V ). Since f = ∑u∈V f (u)eu , by (23) we get∥∥Sn
λλλλλ f
∥∥2 = ∑

u∈V
| f (u)|2∥∥Sn

λλλλλeu
∥∥2 = ∑

u∈V

(
∑

v∈Chi〈n〉(u)

∣∣λu|v
∣∣2)| f (u)|2

� Ĉn ∑
u∈V

| f (u)|2 = Ĉn ‖ f‖2
�2(V ) ,
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which implies that
∥∥Sn

λλλλλ
∥∥2 � Ĉn for all n∈ Z+ . By a method similar to that in the proof

of [21, Lemma 3.18], we can see that
∥∥Sn

λλλλλ
∥∥2 = Ĉn, for all n ∈ Z+. Therefore Sλλλλλ is

normaloid if and only if Ĉn = Ĉn
1 for all n ∈ N , i.e.,

sup
u∈V

∑
v∈Chi〈n〉(u)

|λu|v|2 = sup
u∈V

(
∑

v∈Chi(u)
|λv|2

)n
, n ∈ Z+. (24)

Applying (24) to the weighted shifts Sλλλλλ on directed trees Tη,κ and by direct
computation, we obtain an equivalent condition for Sλλλλλ normaloid as follows.

PROPOSITION 14. Let Sλλλλλ be a weighted shift on Tη,κ as usual. For brevity, we
set

ân,η = sup
i∈Jη
j∈N

∏
k∈Jn

λ 2
i, j+k, n ∈ N, (25)

b̂n,η,κ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

0�k�κ−1
λ 2
−k, if n = 1,

max
0�l�κ−1

Ωn,l, if 1 � κ < n,

max
{

max
0�l�κ−n

n−1
∏
k=0

λ 2
−k−l, max

0�l�n−2
Ωn,l

}
, if 2 � n � κ ,

(26)

where Ωn,l :=
l

∏
k=0

λ 2
−k

(
∑

i∈Jη
∏

j∈Jn−1−l

λ 2
i, j

)
. Define a sequence {Ĉn,η,κ}n∈N by

Ĉn,η,κ =

⎧⎪⎨⎪⎩
max{ân,η , ∑

i∈Jη
∏
j∈Jn

λ 2
i, j}, if κ = 0;

max{ân,η , ∑
i∈Jη

∏
j∈Jn

λ 2
i, j, b̂n,η,κ}, if κ ∈ N;

n ∈ N. (27)

Then Sλλλλλ is normaloid if and only if Ĉn,η,κ = Ĉn
1,η,κ for all n ∈ N , which is equivalent

to Ĉ1,η,κ = limn→∞ Ĉ1/n
n,η,κ .

COROLLARY 15. Let Sλλλλλ := Sλλλλλ (u,v,x,y) be a weighted shift as defined in Subsection

3.4. Then Sλλλλλ is normaloid if and only if W (0) is normaloid, or equivalently max{1,x+
y} � max{u,v} .

Proof. Firstly, we claim that ‖Sn
λλλλλλλλλλλλλλλλλλλλλλλλλ‖ = ‖(W (0))n‖ . According to (25)–(27), we can

see that Ĉ1,2,1 = max{1,x+ y,max{u,v}} , and

Ĉn,2,1 = max{un−2x+ vn−2y,un−1x+ vn−1y,max{un,vn}}, n ∈ N2. (28)
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Observe that the sequence
{

uk+1x+vk+1y
ukx+vky

}
k∈N

is monotonically increasing. Using (21)

and this observation, we can see that

‖W (0)‖2 = max
{

1,x+ y, sup
k∈Z+

uk+1x+ vk+1y
ukx+ vky

}
= max

{
1,x+ y, lim

k→∞

uk+1x+ vk+1y
ukx+ vky

}
= max{1,x+ y,u,v}.

Similarly, we may see that

‖(W (0))n‖2 = max
{

un−2x+ vn−2y,un−1x+ vn−1y, sup
k∈Z+

uk+nx+ vk+ny
ukx+ vky

}
= max{un−2x+ vn−2y,un−1x+ vn−1y,max{un,vn}}, n ∈ N2. (29)

By (28) and (29), we have ‖(W (0))n‖2 = Ĉn,2,1 for all n � 2. Hence W (0) is normaloid
if and only if Sλλλλλ is normaloid.

Furthermore, if the inequality max{1,x+y}� max{u,v} holds, by a simple com-
putation, we get Ĉn,2,1 = Ĉn

1,2,1 , n ∈ N2 , and so Sλλλλλ is normaloid. Conversely, suppose

that Sλλλλλ is normaloid, i.e., Ĉn,2,1 = Ĉn
1,2,1 , n ∈ N2 . By using this equality and some el-

ementary computations, we can see that max{1,x+ y,max{u,v}}= max{u,v} . Hence
the proof is complete. �

It is well-known that there exists a 3× 3 real matrix A such that A is normaloid
but not p -paranormal for any p > 0 (see [17, Example 5, p. 179]). The following
corollary provides such an example on an infinite dimensional Hilbert space.

COROLLARY 16. There exists a normaloid weighted shift Sλλλλλ on T2,1 such that
Sλλλλλ is not p-paranormal for any p > 0 .

Proof. Use Corollary 15 and equivalent conditions for p -paranormality of Sλλλλλ on
T2,1 as in Subsection 3.4. �

We now close this section with the following remark related to Q1 and Q2 for
normaloidness of weighted shifts Sλλλλλ on Tη,κ .

REMARK 17. Let Sλλλλλ be a weighted shift on Tη,κ as usual. It seems difficult to
solve Q1 or Q2 when P is normaloid, and we do not attempt it in this paper.

4. Collapsed branching shifts and properties

4.1. Basic properties

We consider question Q2 about quasinormality, subnormality, ∞-hyponormality,
p -hyponormality ( p > 0), and p -paranormality of the collapsed shift Sλ̃λλλλ of Sλλλλλ ∈
B(�2(Vη,κ)) . We start this section with basic lemmas about the collapsing method,
which will be used frequently in subsequent parts of the paper.



614 G. R. EXNER, I. B. JUNG, E. Y. LEE AND M. R. LEE

LEMMA 18. Suppose η = 2 . Let Sλλλλλ be a weighted shift on T2,κ with weights
λλλλλ = {λv}v∈V◦

2,κ
. Then the last-step collapsed weighted shift W̃ and basic branching

shift W (0) of Sλλλλλ coincide.

Proof. This is provided directly by Definitions 1 and 2. �

LEMMA 19. Suppose η � 3 . Let Sλλλλλ be a weighted shift on Tη,κ with weights
λλλλλ = {λv}v∈V◦

η,κ and let Sλ̃λλλλ be the first-step collapsed weighted shift of Sλλλλλ with weights

λ̃λλλλ = {λ̃v}v∈V◦
η−1,κ

. Then W̃ (0) = W (0) , where W (0) is the basic branching shift associ-

ated to Sλλλλλ and W̃ (0) is the basic branching shift associated to the first-step collapsed
weighted shift Sλ̃λλλλ . Moreover, W (i) = W̃ (i) for i ∈ Jη−2 , where W (i) [resp., W̃ (i)] is the
i-th branching shift of Sλλλλλ [resp., Sλ̃λλλλ ] .

Proof. We claim that the weights of W̃ (0) and W (0) coincide. The weight se-

quence {α̃(0)
j }∞

j=−κ+1 of W̃ (0) is as follows:

α̃(0)
j = λ̃ j for j ∈ (−Jκ−1)∪{0},

α̃(0)
1 =

(
∑

i∈Jη−1

λ̃ 2
i,1

)1/2
, α̃(0)

j+1 =

⎛⎜⎜⎝
∑

i∈Jη−1

∏
k∈Jj+1

λ̃ 2
i,k

∑
i∈Jη−1

∏
k∈Jj

λ̃ 2
i,k

⎞⎟⎟⎠
1/2

, j ∈ N, (30)

and the weight sequence {α(0)
j }∞

j=−κ+1 of W (0) is as in (2) and (3). By (4) and (5), it
is easy to check that

∏
k∈Jj

λ̃ 2
η−1,k =

η

∑
i=η−1

∏
k∈Jj

λ 2
i,k, j ∈ N.

Using this equality and (6), we obtain

α̃(0)
j+1 =

⎛⎜⎜⎝
∑

i∈Jη−2

∏
k∈Jj+1

λ̃ 2
i,k + ∏

k∈Jj+1

λ̃ 2
η−1,k

∑
i∈Jη−2

∏
k∈Jj

λ̃ 2
i,k + ∏

k∈Jj

λ̃ 2
η−1,k

⎞⎟⎟⎠
1/2

=

⎛⎜⎜⎜⎝
∑

i∈Jη−2

∏
k∈Jj+1

λ 2
i,k +

η
∑

i=η−1
∏

k∈Jj+1

λ 2
i,k

∑
i∈Jη−2

∏
k∈Jj

λ 2
i,k +

η
∑

i=η−1
∏

k∈Jj

λ 2
i,k

⎞⎟⎟⎟⎠
1/2

(31)

=

⎛⎜⎝ ∑
i∈Jη

∏
k∈Jj+1

λ 2
i,k

∑
i∈Jη

∏
k∈Jj

λ 2
i,k

⎞⎟⎠
1/2

, j ∈ N.
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Comparing (3) and (31), we have α̃(0)
j+1 = α(0)

j+1 for j ∈ N . By (3), (4), (6), and (30), we
have

α̃(0)
1 =

(
∑

i∈Jη−2

λ̃ 2
i,1 + λ̃ 2

η−1,1

)1/2
=
(

∑
i∈Jη

λ 2
i,1

)1/2
= α(0)

1 . (32)

Others are trivial. The “moreover” part of this proposition follows immediately from
the definitions of W (i) and W̃ (i) . Hence the proof is complete. �

For brevity, in the remaining part of this paper we will say simply “Sλ̃λλλλ is
the collapsed weighted shift of Sλλλλλ ” instead of using “the first-step” when no
confusion will arise.

Repeating the steps for collapsing branches in Lemma 19, and using Lemma 18, we
may obtain the following corollary.

COROLLARY 20. Suppose η � 2 . Let Sλλλλλ be a weighted shift on Tη,κ with
weights λλλλλ = {λv}v∈V◦

η,κ . Then the last-step collapsed weighted shift W̃ and the ba-

sic branching shift W (0) of Sλλλλλ coincide.

4.2. Quasinormality and subnormality

First we answer question Q2 affirmatively when property P is quasinormality.

PROPOSITION 21. If Sλλλλλ is a quasinormal weighted shift on Tη,κ with weights
λλλλλ = {λv}v∈V◦

η,κ , then the collapsed weighted shift Sλ̃λλλλ of Sλλλλλ is quasinormal.

Proof. If η = 2, by Proposition 3 and Corollary 20, Sλ̃λλλλ is quasinormal. Thus we
may assume η � 3. By (5) and (7), we may see that

λ̃η−1, j =

(
∑
i∈Jη

λ 2
i,1 ·

λ 2
η−1,1 + λ 2

η,1

λ 2
η−1,1 + λ 2

η,1

)1/2

=
(

∑
i∈Jη

λ 2
i,1

)1/2
= λη−1, j, j ∈ N2. (33)

By (6) and (32), we get ∑i∈Jη−1
λ̃ 2

i,1 = λ̃ 2
0 = λ 2

0 = ∑i∈Jη λ 2
i,1. According to P1, by (6)

and (33), Sλ̃λλλλ is quasinormal. �
Next we answer question Q2 affirmatively when property P is subnormality.

THEOREM 22. If Sλλλλλ is a subnormal weighted shift on Tη,κ with weights λλλλλ =
{λv}v∈V◦

η,κ , then the collapsed weighted shift Sλ̃λλλλ of Sλλλλλ is subnormal.

Proof. The case η = 2 follows easily from Lemma 18 and 1◦ in Section 1. So we
will consider η � 3. Recall that Sλλλλλ is subnormal if and only if every W (i) is subnormal
for all i ∈ Jη ∪{0} . Similarly this fact holds for Sλ̃λλλλ , and so it is enough to show that

every i-th branching shift W̃ (i) is subnormal for i ∈ Jη−1 ∪{0} . By Lemma 19, we
have W̃ (i) = W (i) for all i ∈ Jη−2 ∪ {0} . So to finish we need only that W̃ (η−1) is
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subnormal. We first scale the problem, namely, multiply all the weights of Sλλλλλ by a
c > 0 so small that W (η−1) , W (η) , and W̃ (η−1) are all contractions. This can surely
be done for W (η−1) , W (η) , and an inspection of the resulting weights for W̃ (η−1) (see
Figure 3) shows that these are also multiplied by c . Since all the shifts are bounded,
this succeeds, and of course scaling the operators does not change subnormality.

But now we can detect subnormality by checking moment sequences of W (η−1) ,
W (η) and W̃ (η−1) . The moment sequence for W (η−1) is

1,λ 2
η−1,2,λ

2
η−1,2λ 2

η−1,3,λ
2
η−1,2λ 2

η−1,3λ 2
η−1,4, · · · ,

n

∏
k=2

λ 2
η−1,k, · · · ,

and that for W (η) is

1,λ 2
η,2,λ

2
η,2λ 2

η,3,λ
2
η,2λ 2

η,3λ 2
η,4, · · · ,

n

∏
k=2

λ 2
η,k, · · · .

These sequences are completely monotone (see Section 3 of [20]), which is equivalent
to the Agler condition

A(n, i) :=
n

∑
j=0

(−1) j
(

n
j

) j+1

∏
k=2

λ 2
i,k � 0, n ∈ N, i ∈ {η −1,η}, (34)

with the convention ∏b
j=a(·) j = 1 for a > b . The moment sequence for W̃ (η−1) is

1,
λ 2

η−1,1λ 2
η−1,2 + λ 2

η,1λ 2
η,2

λ 2
η−1,1 + λ 2

η,1

, · · · ,

η
∑

i=η−1
∏

k∈Jn
λ 2

i,k

λ 2
η−1,1 + λ 2

η,1

, · · · .

Now we observe that for n ∈ N ,

η

∑
i=η−1

λ 2
i,1A(n, i) = (λ 2

η−1,1 + λ 2
η,1)+

(
∑
j∈Jn

(−1) j
(

n
j

) η

∑
i=η−1

∏
k∈Jj+1

λ 2
i,k

)

= (λ 2
η−1,1 + λ 2

η,1)

⎛⎜⎜⎜⎝1+ ∑
j∈Jn

(−1) j
(

n
j

) η
∑

i=η−1
∏

k∈Jj+1

λ 2
i,k

λ 2
η−1,1 + λ 2

η,1

⎞⎟⎟⎟⎠

= (λ 2
η−1,1 + λ 2

η,1)
n

∑
j=0

(−1) j
(

n
j

) η
∑

i=η−1
∏

k∈Jj+1

λ 2
i,k

λ 2
η−1,1 + λ 2

η,1

.

By (34), it is obvious that

n

∑
j=0

(−1) j
(

n
j

) η
∑

i=η−1
∏

k∈Jj+1

λ 2
i,k

λ 2
η−1,1 + λ 2

η,1

� 0,
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(which means that the moment sequence for W̃ (η−1) is completely monotone). Thus
W̃ (η−1) is subnormal, and so Sλ̃λλλλ is subnormal. Hence the proof is complete. �

4.3. p -hyponormality

In this subsection we solve question Q2 when property P of Sλλλλλ is p -hyponormality
and prove Theorem 4 in the general case of η .

THEOREM 23. Suppose p > 0 . If Sλλλλλ is a p-hyponormal weighted shift on a
directed tree Tη,κ with weights λλλλλ = {λv}v∈V◦

η,κ , then the collapsed weighted shift Sλ̃λλλλ
of Sλλλλλ is p-hyponormal.

Proof. Since the case η = 2 follows from Lemma 18 and Proposition 7, we will
consider only η � 3 as before. Recall that Sλλλλλ is p -hyponormal if and only if conditions
(i)–(iv) of P2 hold. Let us write the associated conditions for p -hyponormality of Sλ̃λλλλ
as P2( ĩ )–( ĩv) for the time being. According to (6), we can see that P2(i) and P2( ĩ )
coincide. Since

λ̃ 2
0

∑
i∈Jη−1

λ̃ 2
i,1

=
λ̃ 2

0

∑
i∈Jη−2

λ̃ 2
i,1 + λ̃ 2

η−1,1

(4)&(6)=
λ 2

0

∑
i∈Jη−2

λ 2
i,1 + λ 2

η−1,1 + λ 2
η,1

=
λ 2

0

∑
i∈Jη

λ 2
i,1

,

also conditions (ii) and ( ĩi ) of P2 coincide. By (6), each of conditions (iv) and ( ĩv) of
P2 coincide for i ∈ Jη−2 . It follows from the Cauchy-Schwarz inequality that( η

∑
i=η−1

∏
k∈Jj

λ 2
i,k

)2
�
( η

∑
i=η−1

∏
k∈Jj−1

λ 2
i,k

)( η

∑
i=η−1

λ 2
i, j ∏

k∈Jj

λ 2
i,k

)
, j ∈ N2,

and by using P2(iv), the inequality P2( ĩv) holds when i = η −1. So our concentration
is on condition P2(iii). Observe that P2( ĩii ) is equivalent to (cf. (32))(

∑
i∈Jη

λ 2
i,1

)p−1
(

∑
i∈Jη−2

λ 2
i,1

λ 2p
i,2

+
(λ 2

η−1,1 + λ 2
η,1)

p+1

(λ 2
η−1,1λ 2

η−1,2 + λ 2
η,1λ 2

η,2)p

)
� 1. (35)

It is clearly sufficient from P2(iii) and (35) to show

(λ 2
η−1,1 + λ 2

η,1)
p+1

(λ 2
η−1,1λ 2

η−1,2 + λ 2
η,1λ 2

η,2)p
�

λ 2
η−1,1

λ 2p
η−1,2

+
λ 2

η,1

λ 2p
η,2

. (36)

Observe that we may scale the problem by multiplying each weight by c > 0 such that

c2λ 2
η−1,1 + c2λ 2

η,1 = 1.

This is because the total order of each side is c2−2p in the scaling constant c . So we
assume (without changing notation) that λ 2

η−1,1 + λ 2
η,1 = 1, and then (36) becomes

1

(λ 2
η−1,1λ 2

η−1,2 + λ 2
η,1λ 2

η,2)p
�

λ 2
η−1,1

λ 2p
η−1,2

+
λ 2

η,1

λ 2p
η,2

. (37)
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Let x = λ 2
η−1,1 (so λ 2

η,1 = 1− x ), λ 2
η−1,2 = a and λ 2

η,2 = b . Then (37) becomes

1
(ax+b(1− x))p � x

ap +
1− x
bp ,

which is equivalent to

(bpx+ap(1− x))
1
p � ab

ax+b(1− x)
. (38)

By Lemma 6, (38) holds automatically, and so does (36). Hence Sλ̃λλλλ has condition

P2( ĩii ). The proof is complete. �

PROPOSITION 24. If Sλλλλλ is ∞-hyponormal, then Sλ̃λλλλ is ∞-hyponormal.

Proof. The case η = 2 follows from Lemma 18 and Corollary 5. Therefore we
will consider η � 3, too. Recall that Sλλλλλ is ∞-hyponormal if and only if the conditions
(i), (ii), (iv) of P2 and (18) hold (see Proposition 8). Let us write the corresponding
conditions for ∞-hyponormality of Sλ̃λλλλ as ( ĩ ), ( ĩi ), ( ĩv) of P2, and ( 1̃8). According

to the proof of Theorem 23, conditions (i), (ii) and (iv) of P2 imply conditions ( ĩ ),
( ĩi ), and ( ĩv) of P2. Since c := ∑i∈Jη λ 2

i,1 = ∑i∈Jη−1
λ̃ 2

i,1 , by (6) and (18), we see that

∑i∈Jη−1
λ̃ 2

i,1 � mini∈Jη−2{λ̃ 2
i,2} . Using (5) and (18), we get that

λ̃ 2
η−1,2 =

λ 2
η−1,1λ 2

η−1,2 + λ 2
η,1λ 2

η,2

λ 2
η−1,1 + λ 2

η,1

�
λ 2

η−1,1c+ λ 2
η,1c

λ 2
η−1,1 + λ 2

η,1

= c.

Thus, the condition (1̃8) holds. This complete the proof. �

Now we will prove Theorem 4 by using Theorem 22.

Proof of Theorem 4. Suppose that Sλλλλλ is p -hyponormal on Tη,κ . It follows from
P2(iv) that W (i) is p -hyponormal for i ∈ Jη . So we will show by mathematical induc-
tion that

Claim: if Sλλλλλ is a p -hyponormal weighted shift on Tη,κ (p > 0, η ∈ N2) , then
the basic branching shift W (0) is p -hyponormal.

The case η = 2 follows from Proposition 7. We now assume that the statement
holds when η = m . For the case of η = m + 1, we suppose Sλλλλλ is a p -hyponormal
weighted shift on Tm+1,κ . By Theorem 23, the (m + 1)-th collapsed shift Sλ̃λλλλ as-
sociated to Sλλλλλ is p -hyponormal on Tm,κ . By the induction hypothesis in η = m ,
the basic branching shift W̃ (0) of Sλ̃λλλλ is p -hyponormal. Applying Lemma 19, we get

W (0) = W̃ (0) , where W (0) is the basic branching shift of Sλλλλλ on Tm+1,κ , and so W (0)

is p -hyponormal. Thus our statement holds. The proof is complete. �
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4.4. p -paranormality

Now we solve question Q2 when property P is p -paranormality.

PROPOSITION 25. Suppose 0 < p � 1 . If Sλλλλλ is a p-paranormal weighted shift
on Tη,κ with weights λλλλλ = {λv}v∈V◦

η,κ , then the collapsed weighted shift Sλ̃λλλλ of Sλλλλλ is
p-paranormal.

Proof. Recall that Sλλλλλ is p -paranormal if and only if the conditions (i), (ii), (iv) of
P2, and (19), hold (see (P3)). We write the corresponding conditions for p -paranormality
of Sλ̃λλλλ as ( ĩ ), ( ĩi ), ( ĩv) of P2 and ( 1̃9). According to the proof of Theorem 23,

conditions (i), (ii) and (iv) of P2 imply conditions ( ĩ ), ( ĩi ), ( ĩv), respectively. Since

∑i∈Jη λ 2
i,1 = ∑i∈Jη−1

λ̃ 2
i,1 , it is enough to show that

λ 2
η−1,1λ 2p

η−1,2 + λ 2
η,1λ 2p

η,2 � (λ 2
η−1,1 + λ 2

η,1)

(
λ 2

η−1,1λ 2
η−1,2 + λ 2

η,1λ 2
η,2

λ 2
η−1,1 + λ 2

η,1

)p

. (39)

As in the proof of Proposition 7, we scale the weights {λv}v∈V◦
η,κ of Sλλλλλ so that λ 2

η−1,1+
λ 2

η,1 = 1. Set a = λ 2
η−1,2 , b = λ 2

η,2 and x = λ 2
η−1,1 . Then condition (39) becomes

xap +(1− x)bp � (xa+(1− x)b)p. (40)

Thus it is sufficient to show that (40) holds for p ∈ (0,1] . Since the function f (t) := t p

is concave when p ∈ (0,1) , it is obvious that x f (a)+ (1− x) f (b) � f (xa+(1− x)b)
for all x∈ (0,1) and a,b > 0. When p = 1, the equality in (40) holds. Hence the proof
is complete. �

REMARK 26. According to the “ p -paranormality” part in Subsection 3.4, we see
that there exists a p -paranormal weighted shift Sλλλλλ on T2,1 such that W (0) is not p -
paranormal. Since in the case η = 2 the first collapsed weighted shift Sλ̃λλλλ becomes

W (0) , we can obtain the following, a counterpart of Proposition 25 for p > 1:

for p > 1 , it is not necessarily true that if Sλλλλλλλλλλλλλλλλλλλλλλλλλ is p-paranormal, then
Sλ̃λλλλ is p-paranormal. (41)

In Remark 26, we consider first the simplest case η = 2 to show (41). Further-
more, we will provide additional example to exhibit (41) for η = 3 in the next section
(see Example 28).

4.5. Examples

We discussed relationships, for various P , between the following two conditions:

(C1 ) Sλλλλλ has property P ,

(C3 ) Sλ̃λλλλ has property P .
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In this section, we proved the implications (C1 ) ⇒ (C3 ) when the “placeholder P” in
Q2 is quasinormality, subnormality, p -hyponormality (0 < p � ∞) or p -paranormality
(0 < p � 1) . But the converse implications are not true. We provide counterexamples
for these converse implications.

EXAMPLE 27. Consider a weighted shift Sλλλλλ on T3,1 with weights λλλλλ = {λv}v∈V◦
3,1

with λ0 ∈ (0,1] and consider weights λλλλλ = {λv}v∈V◦
3,1

of T3,1 given by

λ1,1 =
√

x, λ2,1 =
√

uy, λ3,1 =
√

vy, λ2,2 = λ3,3 =
√

v
u
, λ2,3 = λ3,2 =

√
u
v
,

λv = 1, otherwise,

where x,y,u,v > 0 with x + y = 1 and u+ v = 1. By Definition 2, the weights λ̃λλλλ =
{λ̃v}v∈V◦

2,1
of Sλ̃λλλλ of Sλλλλλ are given by

λ̃0 = λ0, λ̃1,1 =
√

x, λ̃2,1 =
√

y, and λ̃v = 1 otherwise.

By the corresponding equivalent conditions for each property, we obtain that

(i) Sλλλλλ is quasinormal if and only if λ0 = 1 and u = v ,

(ii) Sλ̃λλλλ is quasinormal if and only if λ0 = 1,

(iii) Sλλλλλ is subnormal if and only if u = v ,

(iv) Sλ̃λλλλ is always subnormal,

(v) Sλλλλλ is p -hyponormal if and only if u = v (0 < p � ∞) ,

(vi) Sλ̃λλλλ is always p -hyponormal (0 < p � ∞) ,

(vii) Sλλλλλ is p -paranormal if and only if u = v (0 < p < ∞) ,

(viii) Sλ̃λλλλ is always p -paranormal (0 < p < ∞) .

According to (i)–(viii) above, we can find weighted shifts Sλλλλλ such that Sλ̃λλλλ has property
P but Sλλλλλ does not when P is any of the operator properties quasi-, sub-, ∞-hypo-, p -
hypo-, or p -paranormality. Moreover, we can confirm easily that this example shows
(C3 ) �⇒ (C1 ) when P is p -paranormality for 0 < p < ∞ .

EXAMPLE 28. Consider a weighted shift Sλλλλλ = Sλλλλλ (x,y,z) on T3,1 with weights
λλλλλ = {λv}v∈V◦

3,1
given by

λ0 ∈ (0,1], λi,1 =
1√
3
, i ∈ J3,

λ1, j =
√

x, λ2, j =
√

y, λ3, j =
√

z, j ∈ N2,
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where x , y and z are positive real numbers. Then weights {λ̃v}v∈V◦
2,1

of the collapsed
weighted shift Sλ̃λλλλ of Sλλλλλ are given by

λ̃0 = λ0, λ̃1,1 =
1√
3
, λ̃2,1 =

√
2
3
,

λ̃1, j =
√

x, λ̃2, j =
(

y j−1 + z j−1

y j−2 + z j−2

)1/2

, j ∈ N2.

By P2 and P3, we obtain without difficulty that

(i) Sλλλλλ is p -hyponormal if and only if 1
xp + 1

yp + 1
zp � 3,

(ii) Sλ̃λλλλ is p -hyponormal if and only if 1
xp +2

(
2

y+z

)p
� 3,

(iii) Sλλλλλ is p -paranormal if and only if 3 � xp + yp + zp ,

(iv) Sλ̃λλλλ is p -paranormal if and only if 3 � xp +2( y+z
2 )p .

To show that

(C3 ) �⇒ (C1 ) when P is p -hyponormality for 0 < p � ∞ ,
(C3 ) �⇒ (C1 ) when P is p -paranormality for 0 < p � 1, and
(C1 ) �⇒ (C3 ) when P is p -paranormality for 1 < p < ∞ ,

(42)

we consider Sλλλλλ (1,y,z) . One can find many counterexamples satisfying (42) in Figures
6 and 7.

Figure 6: Regions of p-hyponormality of Sλλλλλ and Sλ̃λλλλ with x = 1 .

Summary. Combining Propositions 21, 24, and 25, Theorems 22 and 23, and
Examples 27 and 28, we obtain Table 4.1.
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Figure 7: Regions of p-paranormality of Sλλλλλ and Sλ̃λλλλ with x = 1 .

Property P (C1) ⇒ (C3) (C3) ⇒ (C1)

quasi-, sub-, and p-hyponormal True False
p-paranormal (0 < p � 1) True False
p-paranormal (1 < p < ∞) False False

Table 4.1.

5. Generation flatness

In the previous sections, we discussed implications among conditions (C1 ), (C2 )
and (C3 ) that are as in Sections 3 and 4. But, conditions (C1 ) and (C2 ) [(C1 ) and
(C3 )] are not equivalent in some of the standard operator properties. In this section we
prove that if Sλλλλλ is generation flat (whose definition appears below), then (C1 ), (C2 ),
and (C3 ) are equivalent.

Recall from [12, Definition 6.1] that a weighted shift Sλλλλλ on Tη,κ is r -generation
flat (r ∈ N) if

λi, j = λ1, j, i ∈ Jη , j ∈ Nr. (43)

The following properties immediately come from (43).

P4. Suppose a weighted shift Sλλλλλ on Tη,κ with weights λλλλλ = {λv}v∈V◦
η,κ is 2-

generation flat. Then

(i) α(0)
j+1 = λ1, j+1 for j ∈ N , where α(0)

j+1 is the weight of W (0) as in (3),

(ii) λ̃η−1, j = λη−1, j = λη, j, j ∈ N2.
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The following is the main result of this section.

THEOREM 29. Suppose p > 0 . Let Sλλλλλ be a weighted shift on Tη,κ with weights
λλλλλ = {λv}v∈V◦

η,κ . If Sλλλλλ is 2 -generation flat, then the following statements are equivalent.

(i) Sλλλλλ is quasinormal [resp., subnormal, ∞-hyponormal, p-hyponormal, and p-
paranormal ] ,

(ii) W (i) of Sλλλλλ is quasinormal [resp., subnormal, ∞-hyponormal, p-hyponormal,
and p-paranormal ] for all i ∈ Jη ∪{0} ,

(iii) W (0) of Sλλλλλ is quasinormal [resp., subnormal, ∞-hyponormal, p-hyponormal,
and p-paranormal ] ,

(iv) Sλ̃λλλλ is quasinormal [resp., subnormal, ∞-hyponormal, p-hyponormal, and p-
paranormal ] .

The proof of Theorem 29 will appear after the next proposition.

PROPOSITION 30. Suppose p > 0 . Let Sλλλλλ be a weighted shift on Tη,κ with
weights λλλλλ = {λv}v∈V◦

η,κ and let Sλ̃λλλλ be the collapsed weighted shift of Sλλλλλ . Assume that

λη−1, j = λη, j, j ∈ N2. (44)

Then the following statements are equivalent.

(i) Sλλλλλ is quasinormal [resp., subnormal, ∞-hyponormal, p-hyponormal, p-para-
normal],

(ii) Sλ̃λλλλ is quasinormal [resp., subnormal, ∞-hyponormal, p-hyponormal, p-para-
normal].

Proof. Before proving this proposition, we observe that if (44) holds, then P4(ii)
holds, which will be used in the proof.

(i)⇒(ii) In Section 4, we proved that this implication holds for any operator prop-
erties of Sλλλλλ except the case of p -paranormality for p > 1. Hence it is sufficient to
claim that if Sλλλλλ is p -paranormal, then Sλ̃λλλλ is p -paranormal (p > 1) . Hence, using
P4(ii) with j = 2, we see that the equality in (39) holds. By a proof similar to that of
Proposition 25, we get our claim.

(ii)⇒(i) We first prove the case of subnormality. Suppose Sλ̃λλλλ is subnormal. By

P4(ii), since W (η−1) =W (η) = W̃ (η−1) , it is obvious that every branching shift W (i) of
Sλλλλλ is subnormal if and only if every branching shift W̃ (i) of Sλ̃λλλλ is subnormal. Hence
Sλλλλλ is subnormal. Now we consider other properties. We obtained equivalent conditions
(7), P2(i)–(iv), (18), (19) to characterize other properties, namely, quasinormality, ∞-
hyponormality, p -hyponormality, p -paranormality of Sλλλλλ . The conditions correspond-
ing to all operator properties about Sλ̃λλλλ appearing in (ii) can be obtained naturally. We

will write these conditions for Sλ̃λλλλ as ( 7̃ ), P2 (̃i)-(ĩv) , ( 1̃8), ( 1̃9). By using P4(ii) and
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(32), we can see that condition (7) [resp., P2(i)–(iv), (18), (19)] for Sλλλλλ is equivalent to
condition ( 7̃ ) [resp., P2 (̃i)-(ĩv) , ( 1̃8), ( 1̃9)] for Sλ̃λλλλ . Hence the proof is compete. �

We now prove Theorem 29.

Proof of Theorem 29. (i)⇒ (ii) Recall that this implication has been proved al-
ready except in the case of p -paranormality (p > 1) . If Sλλλλλ is p -paranormal (p > 1) ,
then P3 holds. Using (43) with j = 2, (19) is equivalent to (20) for any p > 0. By a
proof similar to that of Proposition 9, W (i) of Sλλλλλ is p -paranormal for all i ∈ Jη ∪{0} .

(i)⇔(iv) See Proposition 30.
(ii)⇒(iii) Obvious.
(iii)⇒(ii) Let {ei}∞

i=−κ be an orthonormal basis for �2 such that

W (0)ei = α(0)
i+1ei, i ∈ (−Jκ)∪Z+.

Then, by P4(i), we see that the restriction W (0)|M of W (0) is unitarily equivalent to
W (i) for i∈ Jη , where M :=

∨
k∈N

{ek} is the span of {ek}k∈N . Since operator properties

of W (0) appearing in (iii) are preserved for the restriction W (0)|M , this implication is
obvious.

(ii)⇒(i) When property P is quasinormality or subnormality, this implication was
proved already. For the remaining parts, we suppose that W (i) is p -hyponormal for
all i ∈ Jη ∪{0} (0 < p � ∞) , i.e., W (i) is hyponormal for i ∈ Jη ∪{0} . By P4(i) and
hyponormality of W (0) , we get

∑
i∈Jη

λ 2
i,1 � λ 2

1,2. (45)

Since (45) implies (18), by Proposition 8, Sλλλλλ is ∞-hyponormal. Then it is obvious that
Sλλλλλ is p -hyponormal. Next, suppose W (i) is p -paranormal for all i ∈ Jη ∪{0} (some
0 < p < ∞). By p -paranormality of W (0) and P4(i), (45) holds, which is equivalent to
(19) for any p > 0. Thus Sλλλλλ is p -paranormal. �

We give a natural question concerning the topics discussed in this paper.

QUESTION 31. Let T =(V,E) be a rooted directed tree with finitely many branch-
ing vertices and let Sλλλλλ be the associated weighted shift on T with weights λλλλλ =
{λu}u∈V◦ . Is it possible to extend the notions about slicing and collapsing the branches
of tree for the properties of Sλλλλλ between subnormality and normaloid of Sλλλλλ such as
subnormality, p -hyponormality, p -paranormality, normaloidness, etc.?
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[2] A. ANAND, S. CHAVAN, Z. JABŁOŃSKI AND J. STOCHEL, A solution to the Cauchy dual subnor-
mality problem for 2 -isometries, J. Funct. Anal., 277, (2019), 108292, 51 pp.
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