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EIGENVALUE PROBLEM MEETS SIERPINSKI TRIANGLE: COMPUTING

THE SPECTRUM OF A NON–SELF–ADJOINT RANDOM OPERATOR

SIMON N. CHANDLER-WILDE, RATCHANIKORN CHONCHAIYA

AND MARKO LINDNER

Abstract. The purpose of this paper is to prove that the spectrum of the non-self-adjoint one-
particle Hamiltonian proposed by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433–6443)
has interior points. We do this by first recalling that the spectrum of this random operator is
the union of the set of �∞ eigenvalues of all infinite matrices with the same structure. We then
construct an infinite matrix of this structure for which every point of the open unit disk is an �∞

eigenvalue, this following from the fact that the components of the eigenvector are polynomials
in the spectral parameter whose non-zero coefficients are ±1’s, forming the pattern of an infinite
discrete Sierpinski triangle.

1. Introduction and Notations

In this paper we study infinite matrices of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . 0 1
b−1 0 1

b0 0 1

b1 0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

with bk ∈ {±1} := {−1,+1} for all k ∈ Z . We think of (1) as a linear operator acting
via matrix-vector multiplication on �p(Z) , the standard space of bi-infinite complex
sequences with p ∈ [1,∞] . By {±1}Z we denote the set of all sequences b = (bk)k∈Z
with bk ∈ {±1} for all k ∈ Z , and we refer to the operator on �p(Z) that is induced by
the matrix (1) as Ab . For convenience, we will also refer to the matrix (1) as Ab . For
p ∈ [1,∞] and b ∈ {±1}Z , we write

specpAb := {λ ∈ C : Ab−λ I is not invertible on �p(Z)},
specp

essA
b := {λ ∈ C : Ab−λ I is not Fredholm on �p(Z)},

specp
point A

b := {λ ∈ C : Ab−λ I is not injective on �p(Z)}.
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Because (1) is a band matrix, it holds (see [23] and [28]) that specpAb and specp
essAb

do not depend on p ∈ [1,∞] , so that it makes sense to abbreviate these as specAb and
specess A

b in what follows. Note however that the set of eigenvalues, specp
point A

b , does
depend on p .

Physicists have studied the operator Ab as the (non-self-adjoint) Hamiltonian of
a particle hopping (asymmetrically) on a 1-dimensional lattice [15, 16, 9, 22]. Appli-
cations of such and related Hamiltonians, especially examples with random diagonals,
include vortex line pinning in superconductors and growth models in population biol-
ogy. The particular model (1) was proposed by Feinberg and Zee in [15], and some
properties of its spectrum have been studied in [9, 22] (also see Paragraph 37, in partic-
ular Figure 37.7c, in [38]).

In all these studies the focus is on the case of a random sequence b ∈ {±1}Z . A
related but completely deterministic concept is that of a pseudo-ergodic sequence. In
accordance with Davies [11], we call b ∈ {±1}Z pseudo-ergodic if every finite pattern
of ±1’s can be found somewhere (as a string of consecutive entries) in b . If b is
pseudo-ergodic (which is almost surely the case if all bk , k ∈ Z , are independent (or
at least not fully correlated) samples from a random variable with values in {±1} and
nonzero probability for both +1 and −1) then, as a consequence of [7] (also see [6, 8,
29, 30] and cf. [11]), it holds that

specAb = specess A
b =

⋃
c∈{±1}Z

specAc =
⋃

c∈{±1}Z

spec∞point A
c. (2)

The contribution of [7] is the third “=” sign in (2) that enables, or at least simplifies, the
explicit computation of the spectra of particular pseudo-ergodic operators in [6, 8, 29].
The first “=” sign in (2) follows immediately from the second; the second comes from
the Fredholm theory of much more general operators and is typically expressed in the
language of so-called limit operators [34, 35, 27, 8]. (A similar equality, often with
the closure taken over the union of spectra, can be found in the literature on spectral
properties of Schrödinger and more general Jacobi operators [32, 4, 10, 11, 21, 1, 31,
17, 18, 19, 20, 33, 26, 25, 36, 37]. The three last papers also shed some light on the role
of limit operators in the study of the absolutely continuous spectrum.)

Note that, by (2), the spectrum of Ab does not depend on the actual sequence b –
as long as it is pseudo-ergodic. In [6] we obtain information about the spectrum, pseu-
dospectrum and numerical range of the bi-infinite matrix operator Ab , its contraction
Ab

+ to the positive half axis (a semi-infinite matrix) and the finite sections Ab
n which,

for n ∈ N , are n×n submatrices of (1). Explicitly and precisely, these related matrices
are

Ab
+ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
b1 0 1

b2 0 1

b3 0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

and Ab
n =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
b1 0 1

b2 0
. . .

. . .
. . . 1

bn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where in the case n = 1 we set Ab
1 = (0) . We explore in some detail in [6] the inter-

relations between the spectra and pseudospectra of Ab , Ab
+ and Ab

n . Here, for ε > 0
and a bounded operator A on �2(N) or �2(Z) , or on Cn equipped with the 2-norm, we
define the ε -pseudospectrum of A (see e.g. [2, 38]) by

specε A := {λ ∈ C : λ ∈ specA or ‖(A−λ I)−1‖ > 1/ε},
where ‖ · ‖ is the induced operator norm. It is convenient also to use the notation
spec0A := specA . Note that the finite matrix Ab

n only depends on the n− 1 val-
ues b1, ...,bn−1 ∈ {±1} . Recognising this, we will use the notation Ab′

n , where b′ =
(b1, ...,bn−1) ∈ {±1}n−1 , as an alternative notation for the same matrix Ab

n .
Here is a summary of our results from [6]:

THEOREM 1.1. [6] If b ∈ {±1}Z is pseudo-ergodic (which holds almost surely
if b is random in the sense discussed above) then the following statements hold.

a) specAb is invariant under reflection about either axis as well as under a 90o

rotation around the origin.

b) Provided the “positive” part of the sequence b (by which we mean (bk)k∈N ) is
itself pseudo-ergodic (contains every finite pattern of ±1 ’s), then, for all ε � 0
one has

specε Ab = specε Ab
+.

c) The numerical range of Ab (considered as an operator on �2(Z)) is

W (Ab) = {x+ iy : x,y ∈ R, |x|+ |y|< 2},
and spec Ab is a strict subset of the closure, clos(W (Ab)) , of the numerical
range, so that

spec Ab � {x+ iy : x,y ∈ R, |x|+ |y|� 2}.

d) For every n ∈ N , where Πn :=
{
c ∈ {±1}Z : c is n-periodic

}
, the set

πn :=
⋃

c∈Πn

specAc =
⋃

c∈Πn

spec∞point A
c (3)

is contained in specAb , by (2). Each set πn consists of k analytic arcs (see
Figure 1.1) with 2n

n � k � 2n that can be computed explicitly (as unions of sets
of eigenvalues of n×n matrices). In particular,

π1 = [−2,2]∪ [−2i,2i] and π2 = π1∪{x+ iy : −1 � x � 1, y = ±x}.

e) For all n ∈ N and ε � 0 , the set

σn,ε :=
⋃

c∈{±1}n−1

specε Ac
n (4)

is contained in specε Ab (see Figure 1.2 for ε = 0 ).
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Figure 1.1: Our figure shows the sets πn , as defined in (3), for n = 1, ...,30 . Recall that π1 = [−2,2]∪
[−2i,2i] and that, for each n , π1 ⊂ πn ⊂ {x+ iy : x,y ∈ R, |x|+ |y| � 2} . Note also that spectra of periodic
infinite matrices can be expressed analytically (by Fourier transform techniques, see e.g. [3, 12]) and that
each set πn consists of k analytic arcs, where 2n/n � k � 2n .

f) In the case of spectra (ε = 0 ), the finite matrix eigenvalues σn := σn,0 from (4)
are connected with the periodic operator spectra πn from (3) by

σn ⊂ π2n+2 ⊂ specAb (5)

for all n ∈ N (see Figure 1.4).
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Figure 1.2: Our figure shows the sets σn := σn,0 of all n× n matrix eigenvalues, as defined in (4), for
n = 1, ...,30 . Note that in the first pictures (with only a few eigenvalues), we have used heavier pixels for the
sake of visibility. By (5), each of the sets with n = 1,2, ...,14 in this figure is contained, respectively, in the
set number 2n+2 of Figure 1.1.

g) As a special case of a much more general spectral inclusion result from [5], we
can complement the inclusion σn,ε ⊂ specε Ab from e) by

σn,ε ⊂ specε Ab ⊂ σn,ε+εn and σn ⊂ specAb ⊂ clos(σn,εn) ,

for n ∈ N and ε > 0 , where εn = 4sinθn < 2π/(n+ 1) , with θn the unique

solution in the interval

(
π

2(n+3)
,

π
2(n+1)

)
of the equation

2cos((n+1)θ ) = cos((n−1)θ ) .
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Figure 1.3: This is a zoom into σ25 – the 25th picture of Figure 1.2. The location of this zoom is near the
point 1+ i , which is the midpoint of the northeast edge of the square clos(W(Ab)) = conv{2,−2,2i,−2i} .
The picture clearly suggests self-similar features of the set σ25 .

REMARK 1.2. Note that the right “=” sign in (3) holds because specAc =
spec∞point A

c for all periodic sequences c , whereas the right “=” sign in (2) only holds

as stated, with the union taken over all c ∈ {±1}Z ; the spectrum and point spectrum of
Ac are different, in general, for specific c ∈ {±1}Z .

REMARK 1.3. The inclusions in g) imply that specAb ⊂ clos(σn,εn) ⊂
clos(specεnA

b) . Since εn → 0 so that clos(specεnA
b) → specAb in the Hausdorff met-

ric [38] as n → ∞ , it follows that clos(σn,εn) → specAb as n → ∞ . For small values of
n the upper bound clos(σn,εn) can be evaluated very explicitly. In particular, θ1 = π/6
so that ε1 = 2 and, since Ac

1 = (0) , we obtain that specAb ⊂ clos(σ1,ε1) = {λ ∈ C :
|λ | � 2} . The result in c) above, that specAb is a strict subset of the closure of the
numerical range, comes from the bound in g) applied with n = 34, when σn,εn is the
union of the pseudospectra of 233 ≈ 8.6×109 matrices of size 34×34.
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It follows from Theorem 1.1 d) and e) that both

σ∞ :=
∞⋃

n=1

σn and π∞ :=
∞⋃

n=1

πn

are subsets of specAb (with σ∞ ⊂ π∞ , by (5)). These subsets consist of countably
many points and countably many analytic arcs, respectively, and so both have zero
(two-dimensional) Lebesgue measure. Indeed, it is not clear from any of the results in
Theorem 1.1 (or other results in the literature) whether specAb has positive Lebesgue
measure, in particular whether it has interior points. Related to this question, Holz et
al. [22, Sections I, V, VI], conjecture that clos(σ∞) ⊂ specAb has a fractal dimension
in the range (1,2) , and so has zero Lebesgue measure.

Figure 1.4: Here we see the inclusion σ5 ⊂ π12 , which holds by (5) with n = 5 . (The points in σ5 are
indicated by circled dots.)
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The purpose of the current paper is to shed light on these questions by constructing
a sequence c ∈ {±1}Z for which spec∞point A

c contains the open unit disk. As a conse-

quence of formula (2) and the closedness of spectra, this shows that specAb contains
the closed unit disk and therefore has dimension 2 and a positive Lebesgue measure.
This is the main result of the next section. Intriguingly we will see that the sequence c
constructed, while rather irregular, is such that each λ in the unit disk is an eigenvalue
of Ac with an eigenvector u ∈ �∞(Z) whose components are polynomials in λ with
coefficients forming the regular self-similar pattern of a discrete Sierpinski triangle (7).

We will finish the paper with our own conjecture on the geometry of clos(σ∞) and
specAb .

2. A sequence c for which specAc contains the unit disk

The formula (2) for the spectrum of Ab when b ∈ {±1}Z is pseudo-ergodic mo-
tivates the following approach to decide whether a given point λ ∈ C is in specAb or
not: look for a sequence c ∈ {±1}Z such that λ ∈ spec∞point A

c , in other words, such
that there exists a non-zero u ∈ �∞(Z) with Acu = λu , i.e.

ui+1 = λui − ci ui−1 (6)

for i ∈ Z . If such a sequence c exists then λ ∈ specAb – if not, then not.
Starting from u0 = 0 and u1 = 1, we will successively use (6) to compute ui for

i = 2,3, ... (an analogous procedure is possible for i = −1,−2,−3, ...) and see whether
the sequence remains bounded. Doing so, we get

u2=λ , u3 = λ 2− c2, u4 = λ 3 − (c2 + c3)λ ,

u5=λ 4− (c2 + c3 + c4)λ 2 + c2c4,

and so on. Explicitly, it is easy to check that, for i � 3, the solution of (6) with initial
conditions u0 = 0 and u1 = 1 is given by the characteristic polynomial

ui =

∣∣∣∣∣∣∣∣∣∣

λ −1

−c2 λ
. . .

. . .
. . . −1

−ci−1 λ

∣∣∣∣∣∣∣∣∣∣
.

Thus, for i � 3, ui is a polynomial of degree i−1 in λ with coefficients depending on
c2, ...,ci−1 . We will aim to achieve that u be a bounded sequence at least for |λ | < 1.

With this in mind we should try to keep the coefficients of these polynomials
small. Precisely, our strategy will be to try to choose c1,c2, ... ∈ {±1} such that each
ui is a polynomial in λ with coefficients in {−1,0,1} . The following table, where we
abbreviate −1 by “−”, +1 by “+”, and 0 by a space, suggests that this seems to be
possible.
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j → coefficients of λ j−1 in the polynomial ui

i ci 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
1 + +
2 + +
3 − − +
4 − +
5 + − + +
6 − − +
7 + − + +
8 − +
9 + − + + +

10 + − + +
11 − + − − − +
12 + − +
13 − − + + − +
14 − − + +
15 + − + + +
16 − +

...
...

...

(7)

For i, j ∈ N , denote the coefficient of λ j−1 in the polynomial ui by pi, j . Table
(7) shows the values pi, j for i, j = 1, ...,16, given the specific choices indicated on the
left hand side of the table for the coefficients ci . From (6) it follows that

pi+1, j = pi, j−1 − ci pi−1, j, (8)

for i ∈ N and j = 1,2, ..., i + 1, where we have defined pi, j := 0 if j < 1, i < 1, or
j > i .

Let us explore more systematically whether it is possible to choose the coefficients
ci so as to ensure that all the coefficients pi, j ∈ {−1,0,1} . Note first that, if this is
possible, then if, for some i, j , one has that pi, j−1 	= 0 and pi−1, j 	= 0, then pi, j−1 ,
pi−1, j ∈ {−1,1} . Thus it follows from (8) that pi+1, j = 0, i.e.

ci = pi, j−1/pi−1, j = pi, j−1 pi−1, j, (9)

since otherwise pi+1, j ∈ {−2,2} . Illustrating this, look at p15,1 = −1 and p14,2 = −1
in the above table. If we chose c15 = −1, we would get from (8) that p16,2 = −2 	∈
{−1,0,1} , so it is necessary to choose c15 = 1 = p15,1 p14,2 . Luckily, the same value
c15 = 1 is required by the values of p15,9 and p14,10 , as well as by p15,13 and p14,14 .
We will prove that this coincidence, i.e. that the right-hand side of (9) is (if non-zero)
independent of j , is not a matter of fortune. As a result we will show that the pattern
of coefficients in table (7) continues without end, only using values from {−1,0,1}
for pi, j and from {±1} for ci . To prove this, we will make use of a particular self-
similarity in the triangular pattern of (7); more precisely, we will show that the pattern
of non-zero values of the coefficients pi, j forms a so-called infinite discrete Sierpinski
triangle.
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PROPOSITION 2.1. Define the sequence c∈{±1}Z , for positive indices by c1 = 1
and by the requirement that

c2i = c2i−1 ci and c2i+1 = −c2i, i = 1,2, ... ,

and for non-positive indices by

c−i = ci+1, i = 0,1, ... .

Further, given λ ∈ C , define the sequence u = (ui)i∈Z , by the requirement that

ui+1 = λui− ciui−1, i ∈ Z,

and by the initial conditions
u0 = 0, u1 = 1.

Then, as a function of λ , for i ∈ Z , ui is a polynomial of degree |i| − 1 with all its
coefficients taking values in the set {−1,0,1} .

In more detail, denoting, for i, j ∈ N , the coefficient of λ j−1 in the polynomial ui

by pi, j , the following statements hold.

(i) pi, j = 0 for j > i , so that, for every i ∈ N ,

ui =
i

∑
j=1

pi, j λ j−1.

(ii) Defining, additionally, pi, j := 0 if i, j ∈ N∪{0} and i = 0 or j = 0 , it holds that
p1,1 = 1 and that

pi+1, j = pi, j−1 − ci pi−1, j, (10)

for i ∈ N and j = 1,2, ..., i+1 .

(iii) pi, j = 0 if i+ j is odd.

(iv) Writing the semi-infinite coefficient matrix P = (pi, j)i, j∈N in block form as P =
(pi, j)i, j∈N where, for i, j ∈ N ,

pi, j :=
(

p2i−1,2 j−1 p2i−1,2 j

p2i,2 j−1 p2i,2 j

)
,

it holds, for i ∈ N , that pi, j = 0 for j > i while, for j = 1, ..., i ,

pi, j =

⎧⎪⎪⎨
⎪⎪⎩

pi, j

(
1 0
0 1

)
, if i+ j is even,

c2i−1 pi−1, j

(
1 0
0 0

)
, if i+ j is odd.

(11)
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(v) pi, j ∈ {−1,0,1} for i, j ∈ N .

(vi) Let V := {(0,0),(−1,−1),(1,−1)} and let S :=
{
(i, j) ∈ N2 : pi, j is non-zero

}
.

Let Σ := 2N2
be the set of all subsets of N2 , and define T : Σ→ Σ by

T(σ) := 2σ +V = {2a+b : a ∈ σ , b ∈V}, for σ ∈ Σ.

Then, where

S1 := {(1,1)}, and Sn+1 := T(Sn), n ∈ N,

it holds that
S =

⋃
n∈N

Sn and that S = T(S).

(vii) For i ∈ N∪{0} ,
u−i = di ui,

where, for j ∈ N∪{0} ,

d2 j := (−1) jc2 j, d2 j+1 := (−1) j+1.

i

2i

j 2 j

x

x
x

y

���

REMARK 2.2. Statements (iv) and (vi) reveal the self-
similar nature of the pattern (7). With respect to a scaling
of the pattern by the factor 2, an entry pi, j, with i + j even,
replicates three times: as p2i−1,2 j−1, p2i,2 j and, multiplied
by c2i+1, as p2i+1,2 j−1. So the “volume” of the pattern (7)
triples under a scaling by 2, which is why (see [13]) its zeta
dimension is log2 3 ≈ 1.585 – exactly the fractal (Hausdorff
or box-counting) dimension of its bounded version, the usual
Sierpinski triangle or gasket [14].

As an immediate consequence of Proposition 2.1 and formula (2) we get our main
result.

THEOREM 2.3. For the sequence c ∈ {±1}Z from Proposition 2.1, it holds that
the closed unit disk D := {z ∈ C : |z| � 1} is contained in spec Ac . Consequently, for
a pseudo-ergodic b ∈ {±1}Z , one has D ⊂ specAb , so that specAb has dimension 2
and a positive Lebesgue measure.

Proof. Let λ ∈ D := {z ∈ C : |z|< 1} , let c be the sequence from Proposition 2.1
and u : Z → C the corresponding eigenfunction from (6). Then, for every i ∈ N ,

|u−i| = |ui| =

∣∣∣∣∣
i

∑
j=1

pi, jλ j−1

∣∣∣∣∣ �
i

∑
j=1

|pi, j| |λ | j−1 �
∞

∑
j=1

|λ | j−1 =
1

1−|λ |
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since pi, j ∈ {−1,0,1} for all i, j , showing that u ∈ �∞(Z) , and, by our construction
(6), Acu = λu . So D ⊂ spec∞point A

c ⊂ spec Ac . Since spec Ac is closed, it holds that

D ⊂ spec Ac . The claim for a pseudo-ergodic b now follows from specAc ⊂ specAb ,
by (2). Finally, from the monotonicity of (all notions of) dimension [14], it follows that
2 = dim(D) � dim(specAb) � dim(R2) = 2. �

Proof of Proposition 2.1. Statements (i) and (ii) are clear from the discus-
sion preceding Proposition 2.1, and statement (iii) then follows easily by induction.
Thus pi, j = 0 for j > i , and in every matrix pi, j the off-diagonal entries are zero, i.e.
p2i−1,2 j = 0 = p2i,2 j−1 for all i, j .

We will now prove (iv) by proving by induction that, for each i ∈ N , (11) holds
for j = 1, ..., i . It is easy to check that (11) holds for i = j = 1. Now suppose that, for
some k ∈ N , (11) holds for i = 1, ...,k , j = 1, .., i . We will show that this implies that
(11) holds for i = k+1 and j = 1, ...,k+1.

We let i = k+1 and start with the case when i+ j is even. By (10) we have that

p2i−1,2 j−1 = p2i−2,2 j−2 − c2i−2 p2i−3,2 j−1

= p2(i−1),2( j−1) − c2i−2 p2(i−1)−1,2 j−1, (12)

with p2(i−1),2( j−1) = pi−1, j−1 = 0 if j = 1 and, by the inductive hypothesis (and since
i−1+ j−1 is even), p2(i−1),2( j−1) = pi−1, j−1 if j > 1. Also, by the inductive hypoth-
esis, p2(i−1)−1,2 j−1 = c2(i−1)−1 pi−2, j since i−1+ j is odd, while, from the definition
of the sequence c , c2i−2 = c2i−3 ci−1 . Inserting these results in (12), we get that

p2i−1,2 j−1 = pi−1, j−1 − c2i−3 ci−1 c2i−3 pi−2, j

= pi−1, j−1 − ci−1 pi−2, j = pi, j, (13)

by (10). We have observed already that p2i−1,2 j = 0 = p2i,2 j−1 for all i, j , so it re-
mains to consider p2i,2 j . By (10), (13), and the inductive hypothesis which implies that
p2i−2,2 j = p2(i−1),2 j = 0 as i−1+ j is odd, we have that

p2i,2 j = p2i−1,2 j−1 − c2i−1 p2i−2,2 j = pi, j.

Now suppose i+ j is odd. Then, by (10) and the inductive hypothesis,

p2i−1,2 j−1 = p2i−2,2 j−2 − c2i−2 p2i−3,2 j−1

= 0 − c2i−3 ci−1 pi−1, j = c2i−1 pi−1, j,

since c2i−1 = −c2i−2 = −c2i−3 ci−1 . By (10) and the inductive hypothesis and noting
that i−1+ j is even,
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p2i,2 j = p2i−1,2 j−1 − c2i−1 p2i−2,2 j

= c2i−1 pi−1, j − c2i−1 pi−1, j = 0.

This completes the proof of (iv) , and (v) follows from (iv) by a simple induction
argument.

To see that (vi) is true, observe first that, from (i) , (iii) , and (iv) (and cf. Remark
2.2), it holds for i′, j′ ∈ N that (i′, j′) ∈ S iff, for some i, j ∈ N either (i′, j′) = (2i,2 j)
and (i, j) ∈ S ; or (i′, j′) = (2i− 1,2 j− 1) and (i, j) ∈ S ; or (i′, j′) = (2i+ 1,2 j− 1)
and (i, j) ∈ S . From this it follows that S = T(S) .

Define a metric d on Σ by

d(σ ,τ) := ∑
(i, j)∈(σ∪τ)\(σ∩τ)

2−i− j, σ ,τ ∈ Σ.

Then, since
(
T(σ)∪T(τ)

)\ (
T(σ)∩T(τ)

) ⊂ T
(
(σ ∪ τ)\ (σ ∩ τ)) for all σ ,τ ∈ Σ ,

d (T(σ),T(τ)) � ∑
(i, j)∈(σ∪τ)\(σ∩τ)

(
2−2i−2 j +2−(2i−1)−(2 j−1)+2−(2i+1)−(2 j−1)

)

= ∑
(i, j)∈(σ∪τ)\(σ∩τ)

2−i− j (2−i− j +22−i− j +2−i− j) � 3
4

d(σ ,τ), (14)

if (1,1) 	∈ (σ ∪τ)\ (σ ∩τ) . Let Σ1 := {σ ∈ Σ : (1,1) ∈ σ} . Then T(Σ1)⊂ Σ1 and, by
(14), T is a contraction mapping on Σ1 . Thus, by the contraction mapping theorem, T
has a unique fixed point in Σ1 , which is the set S , and, if σ1 ∈ Σ1 and σn+1 := T(σn) ,
n ∈ N , then d(σn,S) → 0 as n → ∞ . In particular, d(Sn,S) → 0 as n → ∞ . Since also
(by an easy induction argument) S1 ⊂ S2 ⊂ ... , it follows that S = ∪n∈NSn .

Define v−i for i = 0,1, ... by v−i := diui , which implies that v0 = 0, and set
v1 = 1. Then, since ui is defined uniquely for i � 0 by the requirement that it satisfy
(6) for i � 0 with the initial conditions that u0 = 0 and u1 = 1, to show (vii) it is
enough to check that the sequence vi satisfies (6) for i � 0, i.e. that

v−i+1 = λv−i− c−iv−i−1, i = 0,1, ... .

But v1−λv0 +c0v−1 = 1+c0d1u1 = 0, so the equation holds for i = 0, and, for i ∈ N ,

v−i+1−λv−i + c−iv−i−1 = di−1ui−1−λdiui + ci+1di+1ui+1

= (di−1− cici+1di+1)ui−1−λ (di− ci+1di+1)ui,

since ui+1 = λui−ciui−1 . Since u0 = 0, the right hand side of this last equation is zero
for i ∈ N provided that di = ci+1di+1 for i ∈ N . But this follows from the definitions
of the sequences c and d . �

REMARK 2.4. The standard infinite discrete Sierpinski triangle (e.g. [24]) is the
set S̃ ⊂N2 defined by S̃ := ∪n∈NS̃n , where S̃1 := {(1,1)} and the sets S̃n , n = 2,3, ... ,
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are defined recursively by S̃n+1 := 2S̃n + Ṽ , where Ṽ := {(0,0),(−1,−1),(0,−1)} .
One instance where S̃ arises is as the pattern of odd coefficients in Pascal’s triangle: for
i ∈ N and j = 1, ..., i the coefficient of x j−1 in (1+ x)i−1 is odd iff (i, j) ∈ S̃ , so that
the discrete Sierpinski triangle is often referred to as Pascal’s triangle modulo 2 (e.g.
[13]). Proposition 2.1(vi) (cf. Remark 2.2) makes clear that the pattern S ⊂ N2 of the
non-zero coefficients in table (7) is essentially that of the standard discrete Sierpinski
triangle S̃ ; indeed, the sets S̃ and S are connected by a linear mapping: (i, j) ∈ S̃ iff
(2i− j, j) ∈ S , for i, j ∈ N .

REMARK 2.5. Note that the sequence c from Proposition 2.1 is not pseudo-ergodic
since, by c2i+1 = −c2i , the patterns “+++” and “−−−” can never occur as consec-
utive entries in the sequence c .

Based on Theorems 1.1 and 2.3 and the numerical results displayed in Figures 1.1
and 1.2, we make the following conjecture.

CONJECTURE. We conjecture that clos(σ∞)= clos(π∞)= specAb , and that specAb

is a simply connected set which is the closure of its interior and which has a fractal
boundary.
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