ESSENTIAL NORM OF GENERALIZED COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES

AJAY K. SHARMA

(Communicated by N.-C. Wong)

Abstract. Upper and lower bounds for the essential norm of generalized composition operators on weighted Hardy spaces are estimated.

1. Introduction

Let \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) be the open unit disk in the complex plane \(\mathbb{C} \), \(\partial \mathbb{D} \) its boundary, \(H(\mathbb{D}) \) the space of all holomorphic functions on \(\mathbb{D} \), and \(H^\infty(\mathbb{D}) \) the space of all bounded analytic functions on \(\mathbb{D} \) with the norm \(\| f \|_\infty = \sup_{z \in \mathbb{D}} |f(z)| \).

For \(a \in \mathbb{D} \), let \(\sigma_a \) be the involutive Möbius transformation of the unit disk, interchanging points \(a \) and 0, that is, \(\sigma_a(z) = (a - z)/(1 - \overline{a}z) \).

Let \(\omega \) be a positive continuous integrable function on \([0, 1) \). If \(\omega(z) = \omega(|z|) \) for every \(z \in \mathbb{D} \), we call it a weight. We say that a weight \(\omega \) is almost standard if it is non-increasing and such that \(\omega(r)/(1 - r)^{1 + \gamma} \) is non-decreasing for some \(\gamma > 0 \). By \(H_\omega \) we denote the weighted Hardy space consisting of all \(f \in H(\mathbb{D}) \) such that

\[
\| f \|_{H_\omega}^2 = |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 \omega(z) dA(z) < \infty,
\]

where \(dA(z) = \frac{1}{\pi} dxdy = \frac{1}{\pi} r dr d\theta \) stands for the normalized area measure on \(\mathbb{D} \) (for this and some related spaces see, e.g. [1, 6]). By some calculation we see that a function \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) belongs to \(H_\omega \) if and only if

\[
\sum_{n=0}^{\infty} \omega_n |a_n|^2 < \infty,
\]

where \(\omega_0 = 1 \) and

\[
\omega_n = 2n^2 \int_0^1 r^{2n-1} \omega(r) dr, \quad n \in \mathbb{N}.
\]

The sequence \((\omega_n)_{n \in \mathbb{N}_0} \) is called the weight sequence of the weighted Hardy space.

Keywords and phrases: Generalized composition operator, weighted Hardy space, boundedness, essential norm, unit disk.
Let $g \in H(D)$ and φ be a holomorphic self-map of D. The next operator denoted by $J_{g, \varphi}$ was introduced by S. Li and S. Stević in [8]

$$J_{g, \varphi} f(z) = \int_0^z f'(\varphi(\zeta)) g(\zeta) \, d\zeta, \quad f \in H(D).$$ \hspace{1cm} (1)

It is called the generalized composition operator. The operator $J_{g, \varphi}$ is a generalization of the integral-type operator J_g, which is obtained for $\varphi(z) = z$.

When $g(z) = \varphi'(z)$, then $J_{g, \varphi}$ is reduced to the difference of a composition operator and a point evaluation operator, more precisely $J_{\varphi'} = C_{\varphi} - \delta_{\varphi(0)}$. Operator (1) is one of products of linear operators on $H(D)$, which have attracted some attention recently, mainly due to the fact that these kind of operators make a link between classical function theory and operator theory. For some results in the area see, e.g. [2]–[4], [6]–[35] and the references therein. Recall that

$$\beta(a, z) = \frac{1}{2} \log \frac{1 + |\sigma_a(z)|}{1 - |\sigma_a(z)|}$$

is the hyperbolic metric on D. Fix $r \in (0, 1)$ and consider the hyperbolic disk or the Bergman disk $D(a, r)$ of radius r and hyperbolic center a. That is,

$$D(a, r) = \{ z \in D : \beta(a, z) < r \}, \quad a \in D.$$

It is well known that $D(a, r)$ is a Euclidean disk whose Euclidean center and Euclidean radius are given respectively by

$$\frac{(1 - s^2)a}{(1 - s^2|a|^2)} \quad \text{and} \quad \frac{(1 - |a|^2)s}{(1 - s^2|a|^2)},$$

where $s = \tanh r \in (0, 1)$.

In the following known lemmas (see e.g. [5] or [33]), we recall some useful properties of the hyperbolic disks.

Lemma 1. Let r be a fixed positive number. Then for all a and z in D satisfying $\beta(a, z) < r$, we have

$$A(D(a, r)) \asymp 1 - |a|^2 \asymp |1 - \overline{a}z| \asymp 1 - |z|^2,$$

where $A(D(a, r))$ denotes the area of $D(a, r)$.

Lemma 2. Let $r \in (0, 1]$ be fixed. Then there exist a positive integer M and a sequence $\{a_j\}$ in D such that:

(a) The disk D is covered by $\{D(a_j, r)\}_{j \in \mathbb{N}}$.

(b) Every point in D belongs to at most M sets in $\{D(a_j, 2r)\}_{j \in \mathbb{N}}$.

(c) If $j \neq m$, then $\beta(a_j, a_m) \geq \frac{r}{2}$.

In what follows, we make use of Carleson measure techniques, so we give a short introduction to Carleson windows and Carleson measures.

The arcs in the unit circle $\partial \mathbb{D}$ be sets of the form $I = \{z \in \partial \mathbb{D} : \theta_1 \leq \arg z < \theta_2\}$, where $\theta_1, \theta_2 \in [0, 2\pi)$ and $\theta_1 < \theta_2$. Normalized length of an arc I will be denoted by $|I|$, that is,

$$|I| = \frac{1}{2\pi} \int_I |dz|.$$

Let I be an arc in $\partial \mathbb{D}$ and let $S(I)$ be the Carleson window defined by

$$S(I) = \{z \in \mathbb{D} : 1 - |I| \leq |z| < 1, z/|z| \in I\}.$$

Let $0 < \alpha < \infty$. Recall that a positive Borel measure μ on \mathbb{D} is an α-Carleson measure if

$$\|\mu\|_\alpha = \sup_{|I| > 0} \frac{\mu(S(I))}{|I|^\alpha} < \infty.$$

A vanishing α-Carleson measure is one for which $\mu(S(I)) = o(|I|^\alpha)$ as $|I| \to 0$ uniformly in arcs $I \subset \partial \mathbb{D}$.

In this paper, we continued our work in [29], where we have established Carleson type Theorem for weighted Hardy spaces and characterized the boundedness of operator (1) on weighted Hardy spaces. The following results are proved in [29].

Theorem 1. Let ω be an almost standard weight, $r \in (0, 1)$ fixed and μ be a positive Borel measure on \mathbb{D}. Then the following statements are equivalent:

(i) The following quantity is bounded

$$C_1 := \sup_{a \in \mathbb{D}} \frac{\mu(D(a, r))}{\omega(a)(1 - |a|^2)^2};$$

(ii) There is a constant $C_2 > 0$ such that, for every $f \in H_\omega$,

$$\int_\mathbb{D} |f'(z)|^2 d\mu(z) \leq C_2 \|f\|^2_{H_\omega};$$

(iii) The following quantity is bounded

$$C_3 := \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{(1 - |a|^2)^{2+2\gamma}}{\omega(a)|1 - \bar{a}z|^{4+2\gamma}} d\mu(z).$$

Moreover, the following asymptotic relationships hold

$$C_1 \asymp C_2 \asymp C_3.$$ (3)
THEOREM 2. Let \(\omega \) be an almost standard weight, \(g \in H(\mathbb{D}) \) and \(\varphi \) be a holomorphic self-map of \(\mathbb{D} \). Then the following statements are equivalent:

(i) \(J_{g,\varphi} \) is bounded on \(H_\omega \).

(ii) The pull-back measure \(\mu_{g,\omega,\varphi} = v_{g,\omega} \circ \varphi^{-1} \) of \(v_{g,\omega} \) induced by \(\varphi \) is an \(\omega \)-Carleson measure, where \(d v_{g,\omega}(z) = |g(z)|^2 \omega(z) dA(z) \).

(iii) \(L := \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{(1 - |a|^2)^{2+2\gamma}}{\omega(a)|1 - \overline{a}z|^{4+2\gamma}} |g(z)|^2 \omega(z) dA(z) < \infty \).

Moreover, if \(J_{g,\varphi} \) is bounded on \(H_\omega \), then

\[
\|J_{g,\varphi}\| \leq L.
\]

The essential norm \(\|T\|_e \) of a bounded linear operator \(T \) on a Banach space \(X \) is given by

\[
\|T\|_e = \inf \{ \|T + K\| : K \text{ is compact on } X \},
\]

i.e., its distance in the operator norm from the space of compact operators on \(X \). The essential norm provides a measure of non-compactness of \(T \). Clearly \(T \) is compact if and only if \(\|T\|_e = 0 \). For some results in the area see, e.g., [4, 13, 15, 17, 21, 24, 28, 30] and the references therein.

Here we estimate the essential norm of the operator \(J_{g,\varphi} \) on weighted Hardy space.

Throughout this paper constants are denoted by \(C \) and they are positive, but not necessarily the same at each occurrence. The notation \(A \asymp B \) means that there is a positive constant \(C \) such that \(B/C \leq A \leq CB \).

2. Essential norm of \(J_{g,\varphi} \) on \(H_w \)

To estimate the essential norm of operator \(J_{g,\varphi} \), we define the next quantity

\[
\|\mu\|_\omega = \sup_{0 < |I| < 1} \frac{\mu(S(I))}{\omega(1 - |I||I|)} < \infty.
\]

The quantity \(\|\mu\|_\omega \) in (4) and constants \(C_1, C_2 \) and \(C_3 \), in Theorem 1 are comparable. Indeed, let \(I \) be arid arc in \(\partial \mathbb{D} \) such that \(0 < |I| < 1 \) and \(a = (1 - |I|) e^{i\theta} \). Then \(a \in \mathbb{D} \) and \(|a| = 1 - |I| \). Thus

\[
C_3 \geq \int_{\mathbb{D}} \frac{(1 - |a|^2)^{2+2\gamma}}{\omega(a)|1 - \overline{a}z|^{4+2\gamma}} d\mu(z) \geq \int_{S(I)} \frac{(1 - |a|^2)^{2+2\gamma}}{\omega(a)|1 - \overline{a}z|^{4+2\gamma}} d\mu(z).
\]

By (2) and some standard geometric arguments, we can easily obtain that there is an absolute constant \(C > 0 \) such that

\[
\frac{(1 - |a|^2)^{2+2\gamma}}{|1 - \overline{a}z|^{4+2\gamma}} \geq \frac{C}{|I|^2}, \quad z \in S(I).
\]
Thus
\[C_3 \geq \frac{C}{\left| \omega(1 - |I|)|I|^2 \right|} \int_{S(I)} d\mu(z) = C \frac{\mu(S(I))}{\omega(1 - |I|)|I|^2}. \]

Since \(I \) is an arbitrary arc, we have
\[\| \mu \|_\omega = \sup_{0 < |I| < 1} \frac{\mu(S(I))}{\omega(1 - |I|)|I|^2} \leq CC_3. \] (5)

Let \(a \in \mathbb{D} \) be arbitrary. For a fixed \(r \in (0, 1) \) there is an arc \(I \) in \(\partial \mathbb{D} \) such that \(0 < |I| < 1, |I| > 1 - |a| \) and \(D(a, r) \in S(I) \) [3]. Since \(\omega \) is an almost standard weight we get
\[\frac{\mu(D(a, r))}{\omega(a)(1 - |a|^2)^2} \leq C \sup_{0 < |I| < 1} \frac{\mu(S(I))}{\omega(1 - |I|^2)|I|^2} = C\| \mu \|_\omega. \]

Taking supermum over \(a \in \mathbb{D} \), we have
\[C_1 = \sup_{a \in \mathbb{D}} \frac{\mu(D(a, r))}{\omega(a)(1 - |a|^2)^2} \leq C\| \mu \|_\omega. \] (6)

Combining (3), (5) and (6), we have that \(\| \mu \|_\omega \) and constants \(C_1, C_2 \) and \(C_3 \), in Theorem 1 are comparable. This settles the claim.

Definition. A positive Borel measure \(\mu \) on \(\mathbb{D} \) is called an \(\omega \)-Carleson measure if it satisfies either of the equivalent conditions in Theorem 1 or condition (4).

A positive Borel measure \(\mu \) on \(\mathbb{D} \) is called a vanishing \(\omega \)-Carleson measure if it satisfies the following condition
\[\lim_{|I| \to 0} \frac{\mu(S(I))}{\omega(1 - |I|)|I|^2} = 0 \quad \text{or equivalently,} \quad \lim_{|a| \to 1} \frac{\mu(D(a, r))}{\omega(a)(1 - |a|^2)^2} = 0. \]

For \(g \in H(\mathbb{D}) \) and \(\varphi \) a holomorphic self-map of \(\mathbb{D} \), define the next quantity
\[\Lambda_g^\varphi(a) := \int_\mathbb{D} \frac{(1 - |a|^2)^{2+2\gamma}}{\omega(a)|1 - \bar{a}\varphi(z)|^{4+2\gamma}} |g(z)|^2 \omega(z)dA(z). \]

Theorem 3. Let \(\omega \) be an almost standard weight, \(g \in H(\mathbb{D}) \) and \(\varphi \) be a holomorphic self-map of \(\mathbb{D} \). Let \(J_{g,\varphi} \) be bounded on \(H_\omega \). Then there is an absolute constant \(C \geq 1 \) such that
\[\limsup_{|a| \to 1} \Lambda_g^\varphi(a) \leq \| J_{g,\varphi} \|_e^2 \leq C \limsup_{|a| \to 1} \Lambda_g^\varphi(a). \]

In order to prove Theorem 3, we need several lemmas. First, we quote an auxiliary result from [6].

Lemma 3. Let \(\omega \) be an almost standard weight. Then
\[\int_\mathbb{D} \frac{\omega(z)}{|1 - \bar{a}z|^{4+2\gamma}}dA(z) \leq \frac{\omega(a)}{(1 - |a|^2)^{2+2\gamma}}. \]
Moreover, if
\[f_a(z) = \frac{1}{\sqrt{\omega(a)}} \frac{(1 - |a|^2)^{1+\gamma}}{(1 - \overline{a}z)^{1+\gamma}}, \quad (7) \]
then \(\|f_a\|_{H\omega} \leq 1. \)

Lemma 4. Let \(0 < r < 1, \mathbb{D}(0, r) = \{ z \in \mathbb{D} : |z| < r \} \) and \(\mu \) be a finite positive Borel measures on \(\mathbb{D} \). Set
\[M_r^\ast(\mu) = M_r^\ast = \sup_{|a| \geq r} \int_{\mathbb{D}} \frac{(1 - |a|^2)^{2+2\gamma}}{\omega(a)|1 - \overline{a}z|^{4+2\gamma}} d\mu(z). \]
Then, if \(\mu \) is an \(\omega \)-Carleson measure for the weighted Hardy space \(H\omega \), so is \(\tilde{\mu}_r = \mu|_{\mathbb{D} \setminus \mathbb{D}(0, r)} \). Moreover,
\[\|\tilde{\mu}_r\|_\omega \leq NM_r^\ast, \]
where \(N \) is a positive constant.

Proof. Let
\[M_r = \sup_{0 < |I| \leq 1 - r} \frac{\mu(S(I))}{\omega(1 - |I|)|I|^2}. \]
Let \(I \subset \partial \mathbb{D} \) be a non-degenerate arc. Then \(|I| = \gamma(1 - r) \) for some \(\gamma \in (0, 1/(1 - r)] \). If \(0 < \gamma \leq 1 \), then \(S(I) \subset \mathbb{D} \setminus \mathbb{D}(0, r) \), and so
\[\tilde{\mu}_r(S(I)) = \mu(S(I)) \leq M_r \omega(1 - |I|)|I|^2. \]
If \(\gamma > 1 \). Then \(1 < ([\gamma] + 1)/\gamma \leq 2 \). Let \(m = [\gamma] + 1 \). Then \(I \) can be covered by \(m \) arcs \(I_1, I_2, \ldots, I_m \), such that \(|I_k| = 1 - r, \ k = 1, 2, \ldots, m \). We have
\[\tilde{\mu}_r(S(I)) = \mu(S(I) \cap (\mathbb{D} \setminus \mathbb{D}(0, r))) \leq \sum_{k=1}^m \mu(S(I_k)) \]
\[\leq M_r \sum_{k=1}^m \omega(1 - |I_k|)|I_k|^2 = M_r m \omega(1 - |I_1|)|I_1|^2 \]
\[\leq \frac{4M_r}{m} \omega(1 - |I_1|)|I_1|^2 \leq \frac{4M_r}{m} \omega \left(\frac{1 - |I|}{\gamma} \right)|I|^2 \leq 4M_r \omega(1 - |I|)|I|^2, \]
where in the last inequality we have used the monotonicity of \(\omega(r) \). This implies that \(\|\tilde{\mu}_r\|_\omega \leq 4M_r \), which means that \(\tilde{\mu}_r \) is an \(\omega \)-Carleson measure.

To complete the proof, it is enough to prove that \(M_r \leq NM_r^\ast \) for some \(N > 0 \). Take \(|I| \leq 1 - r \). Let \(a = (1 - |I|)e^{i\theta} \). Then \(|a| = 1 - |I| \geq r \). By using the standard geometric arguments it is easy to see that there is a positive constant \(C \) such that
\[\frac{(1 - |a|^2)^{2+2\gamma}}{\omega(a)|1 - \overline{a}z|^{4+2\gamma}} \geq \frac{C}{\omega(1 - |I|)|I|^2}. \]
when \(z \in S(I) \) and \(e^{i\theta} \) is the mid point of \(I \). Hence
\[
\frac{\mu(S(I))}{\omega(1-|I|)|I|^2} \leq \frac{1}{C} \int_{S(I)} \frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)|1-\overline{a}z|^{4+2\gamma}} d\mu(z)
\]
\[
\leq \frac{1}{C} \int_{D} \frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)|1-\overline{a}z|^{4+2\gamma}} d\mu(z) \leq \frac{M_r^*}{C}.
\]
(8)

From this and by taking the supremum over all \(I \) with \(0 < |I| \leq 1-r \), we get
\[
Mr_r \leq \frac{M_r^*}{C},
\]
as desired. □

Let \(R_n \) be the orthogonal projection of \(H_\omega \) onto \(z^n H_\omega \) and \(Q_n = I - R_n \), that is, for \(f = \sum_{k=0}^{\infty} a_k z^k \) in \(H_\omega \), let
\[
(R_nf)(z) = \sum_{k=n}^{\infty} a_k z^k \quad \text{and} \quad (Q_nf)(z) = \sum_{k=0}^{n-1} a_k z^k.
\]

We recall the following lemma, ([3, Proposition 3.15]).

Lemma 5. Let \(H_\omega \) be a weighted Hardy space. Then for each \(r \in (0,1) \) and \(f \in H_\omega \)

1. \(|(R_nf)(z)| \leq \|f\|_{H_\omega} \left(\sum_{k=n}^{\infty} \frac{r^{2k}}{w_k} \right)^{1/2} \) for \(|z| \leq r \)

2. \(|(R_nf)'(z)| \leq \|f\|_{H_\omega} \left(\sum_{k=n}^{\infty} k^2 \frac{r^{2(k-1)}}{w_k} \right)^{1/2} \) for \(|z| \leq r \),

where \(w_k = \|z^k\|_{H_\omega}^2, \ k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} \).

Lemma 6. Let \(H_\omega \) be a weighted Hardy space and \(\varphi \) be a holomorphic self-map of \(\mathbb{D} \). Then
\[
\|J_{g,\varphi}\|_e \leq \liminf_{n \to \infty} \|J_{g,\varphi}R_n\|.
\]

Proof. Since \(R_n + Q_n = I \) and \(Q_n \) is compact on \(H_\omega \), we have that for each \(n \in \mathbb{N} \)
\[
\|J_{g,\varphi}\|_e = \|J_{g,\varphi}R_n + J_{g,\varphi}Q_n\|_e \leq \|J_{g,\varphi}R_n\|_e \leq \|J_{g,\varphi}R_n\|,
\]
from which inequality (9) follows. □

Now we are in a position to estimate the essential norm of \(J_{g,\varphi} : H_\omega \to H_\omega \), that is, we are in a position to prove Theorem 3.

Proof of Theorem 3. Upper bound. By Lemma 6, we have
\[
\|J_{g,\varphi}\|_e^2 \leq \liminf_{n \to \infty} \|J_{g,\varphi}R_n\|_e^2 = \liminf_{n \to \infty} \sup_{\|f\|_{H_\omega} \leq 1} \|(J_{g,\varphi}R_n)f\|_{H_\omega}^2.
\]
Thus
\[
\| (J_{g, \varphi} R_n f) \|_{H_{\omega}}^2 = \int_{\mathbb{D}} |(R_n f)'(\varphi(z))|^2 |g(z)|^2 \omega(z) dA(z)
\]
\[
= \int_{\mathbb{D}} |(R_n f)'(z)|^2 d\mu_{g, \omega, \varphi}(z)
\]
\[
= \left(\int_{\mathbb{D}\setminus \mathbb{D}(0, r)} + \int_{\mathbb{D}(0, r)} \right) |(R_n f)'(z)|^2 d\mu_{g, \omega, \varphi}(z)
\]
\[
= I_1(n) + I_2(n).
\]
Since \(\mu_{g, \omega, \varphi} \) is an \(\omega \)-Carleson measure for the weighted Hardy space \(H_{\omega} \), so by Lemma 5, we have that
\[
I_2(n) \leq \sup_{|z| \leq r} |(R_n f)'(z)|^2 \int_{\mathbb{D}(0, r)} d\mu_{g, \omega, \varphi}(z) \leq C \| f \|_{H_{\omega}}^2 \left(\sum_{k=n}^{\infty} k^2 \frac{2^{(k-1)}}{\omega_k} \right) \to 0,
\]
as \(n \to \infty \). Thus for a fixed \(r \) we have \(\sup_{\| f \|_{H_{\omega}} \leq 1} I_2(n) \to 0, \) as \(n \to \infty \).

On the other hand, if we denote by \(\mu_{g, \omega, \varphi_r} = \mu_{g, \omega, \varphi} \big|_{\mathbb{D} \setminus \mathbb{D}(0, r)} \), then by Theorem 1 (ii) and Lemma 4, we have
\[
I_1(n) = \int_{\mathbb{D}} |(R_n f)'(z)|^2 d\mu_{g, \omega, \varphi_r}(z)
\]
\[
\leq C \| \mu_{g, \omega, \varphi_r} \|_{\omega} \int_{\mathbb{D}} |(R_n f)'(z)|^2 \omega(z) dA(z)
\]
\[
\leq CNM_r^* (\mu_{g, \omega, \varphi}) \| f \|_{H_{\omega}}^2.
\]
Therefore,
\[
\lim_{n \to \infty} \| J_{g, \varphi} R_n \|_c^2 \leq CN \lim_{r \to 1} M_r^* (\mu_{g, \omega, \varphi})
\]
\[
= CN \limsup_{|a| \to 1} \int_{\mathbb{D}} \frac{(1 - |a|^2)^{1+2\gamma}}{\omega(a) |1 - \overline{a} \varphi(z)|^{4+2\gamma}} |g(z)|^2 \omega(z) dA(z),
\]
which gives the desired upper bound.

Lower bound. Consider the function \(f_a \) defined as in Lemma 3. Then \(\| f_a \|_{H_{\omega}} \cong 1 \) and \(f_a \to 0 \) uniformly on compact subsets of \(\mathbb{D} \) as \(|a| \to 1 \). Fix a compact operator \(K \) on \(H_{\omega} \). Then \(\| K f_a \|_{H_{\omega}} \to 0 \) as \(|a| \to 1 \) (see [3] for the original idea). Therefore,
\[
\| J_{g, \varphi} + K \| \geq \limsup_{|a| \to 1} \| (J_{g, \varphi} + K) f_a \|_{H_{\omega}}
\]
\[
\geq \limsup_{|a| \to 1} \left(\| J_{g, \varphi} f_a \|_{H_{\omega}} - \| K f_a \|_{H_{\omega}} \right)
\]
\[
= \limsup_{|a| \to 1} \| J_{g, \varphi} f_a \|_{H_{\omega}}.
\]
Thus
\[
\| J_{g, \varphi} \|_c^2 = \inf_{K} \| J_{g, \varphi} + K \|^2 \geq \limsup_{|a| \to 1} \int_{\mathbb{D}} \frac{(1 - |a|^2)^{1+2\gamma}}{\omega(a) |1 - \overline{a} \varphi(z)|^{4+2\gamma}} |g(z)|^2 \omega(z) dA(z). \quad \square
\]
Before we formulate and prove the next corollary, for a Borel measure μ, we define the following Dirichlet-type space

$$\mathcal{D}_\mu(\mathbb{D}) = \left\{ f \in H(\mathbb{D}) : \|f\|_{\mathcal{D}_\mu}^2 := \int_\mathbb{D} |f'(z)|^2 d\mu(z) < \infty \right\}.$$

COROLLARY 2. Let $g \in H(\mathbb{D})$ and ϕ be a holomorphic self-map of \mathbb{D}. Then the following statements are equivalent:

(i) $J_{g,\phi}$ is compact on H_ω.

(ii) The inclusion $i : H_\omega \to \mathcal{D}_{\mu_{g,\omega,\phi}}$ is compact.

(iii) The pull-back measure $\mu_{g,\omega,\phi} = v_{g,\omega} \circ \phi^{-1}$ of $v_{g,\omega}$ induced by ϕ is a vanishing ω-Carleson measure.

(iv) $\lim_{|a| \to 1} \int_\mathbb{D} \frac{(1 - |a|^2)^2 + 2\gamma}{|\omega(a)| - \overline{\omega(z)}|z|^2 + 2\gamma} |g(z)|^2 |\omega(z)| dA(z) = 0$.

Proof. By definition (i) is equivalent to (ii). Theorem 3 implies that (i) is equivalent to (iv). Applying (8) with $\mu = \mu_{g,\omega,\phi}$ we get that (iv) implies (iii).

(iii) \Rightarrow (ii) Assume $(f_n)_{n \in \mathbb{N}}$ is a bounded sequence in H_ω, say by L, such that $f_n \to 0$ on compacta of \mathbb{D} as $n \to \infty$. For an $\varepsilon > 0$ we choose $\rho \in (0,1)$ such that

$$\sup_{|a| > \rho} \frac{\mu_{g,\omega,\phi}(D(a,r))}{\omega(a)(1 - |a|^2)^2} < \varepsilon.$$

Let $(z_n)_{n \in \mathbb{N}}$ be a sequence as in Lemma 2, that is, $(z_n)_{n \in \mathbb{N}}$ is a sequence with a positive separation constant such that $\bigcup_{n=1}^{\infty} D(z_n, r) = \mathbb{D}$ and that every point in \mathbb{D} belongs to at most M sets in the family $\{D(z_n, 2r)\}_{n \in \mathbb{N}}$.

For each $\rho \in (0,1)$ we have

$$\int_\mathbb{D} |f'_n(z)|^2 d\mu_{g,\omega,\phi}(z) = \left(\int_{D(0,\rho)} + \int_{\mathbb{D}\setminus D(0,\rho)} \right) |f'_n(z)|^2 d\mu_{g,\omega,\phi}(z) = J_1(n) + J_2(n).$$

Clearly, for each $\rho \in (0,1)$, we have

$$\lim_{n \to \infty} J_1(n) = 0. \quad (10)$$

Since there are $\rho_1 \in (0,1)$ and $k \in \mathbb{N}$, such that $\bigcup_{n \geq k} D(z_n, r) \subset \mathbb{D}\setminus D(0,\rho_1)$, we have

$$\int_{\mathbb{D}\setminus D(0,\rho_1)} |f'_n(z)|^2 d\mu_{g,\omega,\phi}(z) \leq \sum_{n=k}^{\infty} \int_{D(z_n, r)} |f'_n(z)|^2 d\mu_{g,\omega,\phi}(z) \leq \sum_{n=k}^{\infty} \mu_{g,\omega,\phi}(D(z_n, r)) \sup_{w \in D(z_n, r)} |f'_n(w)|^2 \leq C \sum_{n=k}^{\infty} \omega(z_n)(1 - |z_n|^2)^2 \int_{D(z_n, 3r)} |f'_n(z)|^2 |\omega(z)| dA(z) \leq C \sum_{n=k}^{\infty} \mu_{g,\omega,\phi}(D(z_n, r)).$$
\[\leq C e \sum_{n=k}^{\infty} \int_{D(z_n,3r)} |f_n'(z)|^2 \omega(z) dA(z) \]
\[\leq C M e \int_D |f_n'(z)|^2 \omega(z) dA(z) = C M L^2 \varepsilon. \quad (11) \]

From (11) we have that
\[\limsup_{n \to \infty} \int_{D \setminus B(0,\rho_1)} |f_n'(z)|^2 d\mu_{g,\omega,\varphi}(z) \leq C M L^2 \varepsilon. \quad (12) \]

Since \(\varepsilon > 0 \) is arbitrary from (10) with \(\rho = \rho_1 \) and (12) we get \(\lim_{n \to \infty} \|f_n\|_{D_{g,\omega,\varphi}} = 0 \), from which the compactness of the inclusion \(i : H_\omega \to D_{g,\omega,\varphi} \) follows. \(\square \)

Acknowledgements. We wish to express our sincere appreciation to the referee for helping us to improve the manuscript. This work is a part of the research project sponsored by National Board of Higher Mathematics (NBHM)/DAE, India (Grant No. 48/4/2009/R&D-II/426).

REFERENCES

(Received July 30, 2012)

Ajay K. Sharma
School of Mathematics
Shri Mata Vaishno Devi University
Kakryal, Katra-182320, J& K, India
e-mail: aksju_76@yahoo.com