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(∞,C)–ISOMETRIC OPERATORS

MUNEO CHŌ, EUNGIL KO AND JI EUN LEE

(Communicated by J. W. Helton)

Abstract. In this paper we study properties of (∞,C) -isometric operators. In particular, we
prove that if T is an (∞,C) -isometry and Q is a quasinilpotent operator, then T + Q is an
(∞,C) -isometry under suitable conditions. Moreover, we show that the class of (∞,C) -isometric
operators is norm closed. Finally, we investigate properties of products and tensor products of
(∞,C) -isometric operators.

1. Introduction

Agler and Stankus [1] studied the theory of m-isometric operators which are con-
nected to Topelitz operators, classical function theory, ordinary differential equations,
distributions, classical conjugate point theory, Fejer-Riesz factorization, stochastic pro-
cesses, and other topics. Recently, the authors [3] have introduced (m,C)-isometric op-
erators and studied properties of such operators. So it is natural to consider and study
the classes, named (∞,C)-isometric operators, which contains every finite-isometric
operators with conjugation C .

Let L (H ) be the algebra of bounded linear operators on a separable complex
Hilbert space H . Let N be the set of natural numbers and C be the set of complex
numbers. In 1990s, Agler and Stankus [1] intensively studied the following operator;
for a fixed m ∈ N , an operator T ∈ L (H ) is said to be an m-isometric operator if it
satisfies an identity;

m

∑
j=0

(−1) j
(

m
j

)
T ∗m− jTm− j = 0. (1)

A conjugation on H is an antilinear operator C : H →H with C2 = I which satisfies
〈Cx,Cy〉 = 〈y,x〉 for all x,y ∈ H . Moreover, since ‖Cx‖2 = 〈Cx,Cx〉 = 〈x,x〉 = ‖x‖2

for all x ∈ H , it follows that ‖C‖ = 1. For a conjugation C , there is an orthonormal
basis {en}∞

n=0 for H such that Cen = en for all n . Recall that if C is a conjugation on
H and T ∈ L (H ) , then, since C2 = I , (CTC)k = CTkC and (CTC)∗ = CT ∗C for
every k ∈ N (see [8] or [9] for more details).
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Using the identity (1) and a conjugation C , we define (m,C)-isometric operators
as follows; an operator T ∈ L (H ) is said to be an (m,C)-isometric operator if there
exists some conjugation C such that

m

∑
j=0

(−1) j
(

m
j

)
T ∗m− jCTm− jC = 0

for some m ∈ N . Put Λm(T ) := ∑m
j=0(−1) j

(m
j

)
T ∗m− jCTm− jC. Then T is an (m,C)-

isometric operator if and only if Λm(T ) = 0. Note that

T ∗Λm(T )(CTC)−Λm(T ) = Λm+1(T ). (2)

Hence, if Λm(T ) = 0, then Λn(T ) = 0 for all n � m . Moreover, it is obvious that
T is an (m,C)-isometry if and only if CTC is an (m,C)-isometry (see [3]). We now
introduce the concept of (∞,C)-isometric operators. An operator T ∈L (H ) is called
an (∞,C)-isometric operator with conjugation C if

limsup
m→∞

‖Λm(T )‖ 1
m = 0.

An operator T ∈ L (H ) is called a finite-isometric operator with conjugation C if T
is an (m,C)-isometry for some m � 1. The class of (∞,C)-isometric operators is a
large class which contains finite-isometric operators with conjugation C .

In this paper we study properties of (∞,C)-isometric operators. In particular, we
show that if T is an (∞,C)-isometry and Q is a quasinilpotent operator, then T +Q is
an (∞,C)-isometry where TQ = QT and T ∗CQC =CQCT ∗ . Moreover, we verify that
the class of (∞,C)-isometric operators is norm closed. Finally, we examine properties
of products and tensor products of (∞,C)-isometric operators.

2. (∞,C)-isometric operators

In this section, we give properties of (∞,C)-isometric operators. It is known from
[8] that if C is a conjugation on a Hilbert space H , then there exists an orthonormal
basis {en} of H such that

C(
∞

∑
n=1

anen) =
∞

∑
n=1

anen

whenever ∑ |an|2 < ∞ and, specifically

C(en) = en

for all n∈ N . This means that every conjugation is unitarily equivalent to the canonical
conjugation on an l2 -space with the appropriate dimension (see [8]). We refer to such
a basis as a C -real orthonormal basis for H . We start with the following example.



(∞,C) -ISOMETRIC OPERATORS 795

EXAMPLE 2.1. Let Cn be the conjugation on Cn defined by

Cn(z1,z2, · · · ,zn) := (z1,z2, · · · ,zn).

Assume that T = ⊕∞
n=1Tn where Tn is an n×n matrix;

Tn = In +Nn =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 0 0
. . . 0

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
n 0 · · · 0

0 0 1
n · · · 0

...
. . .

. . .
. . .

...

0 0 0
. . . 1

n
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since Nn is nilpotent of order n, it obvious that Tn is a (2n−1,Cn)-isometric operator.
Hence T is an (∞,C )-isometric operator with a conjugation C = ⊕∞

n=1Cn . Indeed,
if Rn = T1 ⊕ ·· · ⊕Tn ⊕ I ⊕ I ⊕ ·· · , then Rn is a (2n− 1,Cn)-isometric operator and
RnRk = RkRn for all n,k � 1 . Thus Rn → T in the operator norm. Hence T is an
(∞,C )-isometric operator with a conjugation C = ⊕∞

n=1Cn from Theorem 2.7(ii).

We next examine properties of (∞,C)-isometric operators.

THEOREM 2.2. Let T ∈ L (H ) be an (∞,C)-isometric operator where C is a
conjugation on H . Then the following statements hold;

(a) If (T −α)x = 0 and (T −β )y= 0 with αβ 	= 1 , then 〈Cx,y〉= 0 . In particular,
if x or y is nonzero vectors in kerT , then 〈Cx,y〉 = 0 .

(b) If (T −α)x = 0 and (T −β )Cx = 0 where x is nonzero, then αβ = 1 .
(c) If {xn} and {yn} are sequences of unit vectors such that limn→∞(T −α)xn = 0

and limn→∞(T − β )yn = 0 with αβ 	= 1 , then a sequence {〈Cxn,yn〉} has a subse-
quence {〈Cxnl ,ynl 〉} which converges to 0 .

(d) If {xn} is a sequence of unit vectors such that limn→∞(T − α)xn = 0 and
limn→∞(T −β )Cxn = 0 , then αβ = 1 .

Proof. (a) Let α,β ∈C be distinct eigenvalues of T with αβ 	= 0,1 and let x,y be
the unit eigenvectors such that Tx = αx and Ty = βy . Then it follows that CTC(Cx) =
αCx and so

〈Λm(T )Cx,y〉 = 〈
(

m

∑
j=0

(−1)m− j
(

m
j

)
T ∗m− jCTm− jC

)
Cx,y〉

= 〈
(

m

∑
j=0

(−1)m− j
(

m
j

)
T ∗m− jαm− j

)
Cx,y〉

=
m

∑
j=0

(−1)m− j
(

m
j

)
αm− j〈T ∗m− jCx,y〉

=
m

∑
j=0

(−1)m− j
(

m
j

)
αm− j〈Cx,Tm− jy〉

= 〈(αβ −1)mCx,y〉 = (αβ −1)m〈Cx,y〉. (3)
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Moreover, since ‖C‖ = 1, it follows from (3) that

|(αβ −1)||〈Cx,y〉| 1
m = |〈Λm(T )Cx,y〉| 1

m � ‖Λm(T )Cx‖ 1
m ‖y‖ 1

m � ‖Λm(T )‖ 1
m . (4)

Since T is an (∞,C)-isometric operator, it follows from (4) that

|(αβ −1)| lim
m→∞

|〈Cx,y〉| 1
m � limsup

m→∞
‖Λm(T )‖ 1

m = 0. (5)

This implies that limm→∞ |〈Cx,y〉| 1
m = 0 is due to the fact that αβ 	= 1.

Since limm→∞ |〈Cx,y〉| 1
m = 1 if 〈Cx,y〉 	= 0, we conclude that 〈Cx,y〉 = 0.

On the other hand, if α = 0 or β = 0 or α = β , then we know 〈Cx,y〉 = 0 from
(5).

(b) Assume that αβ 	= 1. Set y = Cx . Then it is a nonzero and (a) implies that
‖x‖2 = 〈Cx,Cx〉 = 0, which is a contradiction. Hence αβ = 1.

(c) Suppose that {xn} and {yn} are sequences of unit vectors such that

lim
n→∞

(T −α)xn = 0 and lim
n→∞

(T −β )yn = 0.

Then limn→∞(CTC − α)Cxn = 0 and limn→∞(Tk − β k)yn = 0. Thus we have
limn→∞(CTkC − αk)Cxn = 0 for every k ∈ N . Since {〈Cxn,yn〉}∞

n=1 is bounded,
{〈Cxn,yn〉}∞

n=1 has a convergent subsequence {〈Cxnl ,ynl 〉} . If liml→∞〈Cxnl ,ynl 〉 = μ ,
then it suffices to show that μ = 0. Note that for each fix m � 1, the following relations
hold;

|(αβ −1)mμ | = lim
l→∞

|(αβ −1)m〈Cxnl ,ynl 〉|

= |
m

∑
j=0

(−1)m− j
(

m
j

)
αβ m− j

lim
l→∞

〈Cxnl ,ynl 〉|

= |
m

∑
j=0

(−1)m− j
(

m
j

)
lim
l→∞

〈(CTm− jC)Cxnl ,T
m− jynl 〉|

= | lim
l→∞

〈( m

∑
j=0

(−1)m− j
(

m
j

)
T ∗m− jCTm− jC

)
Cxnl ,ynl

〉|
= lim

l→∞
|〈Λm(T )Cxnl ,ynl 〉| � ‖Λm(T )‖. (6)

Since T is an (∞,C)-isometric operator, it follows from (6) that

|(αβ −1)| lim
m→∞

|μ | 1
m = limsup

m→∞
|(αβ −1)mμ | 1

m � limsup
m→∞

‖Λm(T )‖ 1
m = 0.

Since αβ 	= 1, it follows that μ = 0. Hence liml→∞〈Cxnl ,ynl 〉 = 0.
(d) Assume that αβ 	= 1. Set yn =Cxn and ynl =Cxnl in (c). Then {〈Cxn,Cxn〉}=

{1} has a subsequence {〈Cxnl ,Cxnl 〉} = {1} which converges to 0 by (c). This is a
contradiction. Hence αβ = 1. �

Recall that a vector x ∈ H is said to be isotropic if 〈x,Cx〉 = 0 (see [7, Page 16]).
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THEOREM 2.3. Let T ∈ L (H ) . Then the following assertions hold:
(i) If T is complex symmetric with a conjugation C, then

limsup
m→∞

‖Λm(T )‖ 1
m � r(T 2− I)

where r(A) denotes the spectral radius of A. In particular, if r(T 2− I) = 0 , then T is
an (∞,C)-isometric operator.

(ii) If T is an (∞,C)-isometric operator and x ∈ ker(T −λ ), then λ = 1 or x is
isotropic.

(iii) If T is a strict contraction, i.e., ‖T‖ < 1 , then T is not an (∞,C)-isometric
operator.

Proof. (i) Since T = CT ∗C , it follows that

Λm(T ) =
m

∑
j=0

(−1) j
(

m
j

)
T ∗m− jCTm− jC = C

( m

∑
j=0

(−1) j
(

m
j

)
(T 2)

m− j)
C (7)

and therefore

‖Λm(T )‖ = ‖C( m

∑
j=0

(−1) j
(

m
j

)
(T 2)

m− j)
C‖ � ‖(T 2− I)m‖ (8)

and hence ‖Λm(T )‖ 1
m � ‖(T 2− I)m‖ 1

m . Thus we obtain that

limsup
m→∞

‖Λm(T )‖ 1
m � limsup

m→∞
‖(T 2− I)m‖ 1

m = r(T 2− I).

In particular, if r(T 2− I) = 0, then T is an (∞,C)-isometric operator.

(ii) Let x ∈ ker(T −λ ) . Then (T −λ )x = 0. Therefore, (CTkC−λ
k
)Cx = 0 and

so (Tk −λ k)x = 0 for every k ∈ N . Then it holds that

〈Λm(T )Cx,x〉 =
〈( m

∑
j=0

(−1) j
(

m
j

)
T ∗m− jCTm− jC

)
Cx,x

〉
= 〈

m

∑
j=0

(−1) j
(

m
j

)
(CTm− jC)Cx,T m− jx〉

=
m

∑
j=0

(−1) j
(

m
j

)
〈(CTm− jC)Cx,T m− jx〉

=
m

∑
j=0

(−1) j
(

m
j

)
λ 2(m− j)〈Cx,x〉 = (λ 2−1)m〈Cx,x〉.

This gives that

|λ 2 −1|m · |〈Cx,x〉| = |〈Λm(T )Cx,x〉|
� ‖Λm(T )‖‖Cx‖‖x‖ = ‖Λm(T )‖‖x‖2.
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Since T is an (∞,C)-isometric operator, it follows that λ = 1 or 〈Cx,x〉 = 0. Hence
λ = 1 or x is isotropic.

(iii) Assume that T is an (∞,C)-isometric operator. Then T ∗CTC 	= I . Indeed, if
T is a (1,C)-isometry, then

1 > ‖T‖2 = ‖T ∗‖‖C‖‖T‖‖C‖ � ‖T ∗CTC‖ = ‖I‖ = 1,

which is a contradiction. By the structure of Λm(T ) , (2) implies that

‖Λm(T )‖ � ‖T‖2‖Λm(T )‖+‖Λm+1(T )‖.
Thus we have (1−‖T‖2)‖Λm(T )‖ � ‖Λm+1(T )‖ for some m ∈ N . Therefore, we get
that (1−‖T‖2)m‖Λ1(T )‖ � ‖Λm+1(T )‖ and so

(1−‖T‖2)
m

m+1 ‖Λ1(T )‖ 1
m+1 � ‖Λm+1(T )‖ 1

m+1 . (9)

Since T is an (∞,C)-isometric operator and Λ1(T ) 	= 0, by taking limsup as m → ∞ ,
we obtain that 1−‖T‖2 � 0. Thus ‖T‖ � 1. So we have a contradiction. �

COROLLARY 2.4. Let T ∈ L (H ) . Then the following statements hold.
(i) The inequality

limsup
m→∞

‖Λm(Λk(T ))‖ 1
m � r(Λk(T )2− I)

holds for any k ∈ N where r(A) denotes the spectral radius of A.
(ii) If T 2 = I , then T is an (m,C)-isometric operator and if T 2 = I +Q where Q

is quasinilpotent, then T is an (∞,C)-isometric operator.

Proof. (i) Since

Λk(T )∗ =
k

∑
j=0

(−1) j
(

k
j

)
CT ∗k− jCT k− j,

it follows that CΛk(T )∗C = ∑k
j=0(−1) j

(k
j

)
T ∗k− jCT k− jC = Λk(T ). Therefore, Λk(T )

is a complex symmetric operator with the conjugation C for any k ∈ N .
Hence limsupm→∞ ‖Λm(Λk(T ))‖ 1

m � r(Λk(T )2 − I) by Theorem 2.3(i)
(ii) If T 2 = I , then T is complex symmetric with a conjugation C from [9]. Thus

(8) implies that Λm(T ) = 0 and so T is an (m,C)-isometric operator. On the other
hand, if T 2 = I +Q where Q is quasinilpotent, then r(T 2 − I) = 0 and therefore T is
an (∞,C)-isometric operator. �

REMARK 2.5. We observe from Theorem 2.3(iii) that if S is an isometry, then γS
is not an (∞,C)-isometric operator where γ is a constant for 0 < |γ| < 1. Moreover,
if T ∈ L (H ) and x ∈ ker(T −λ ) where λ 	= 1 and x is not isotropic, then we know
from Theorem 2.3(ii) that T is not an (∞,C)-isometric operator.
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We investigate the quasinilpotent perturbations of an (∞,C)-isometric operator
and show that their class is norm closed.

LEMMA 2.6. If T and Q are in L (H ) with TQ = QT and T ∗CQC =CQCT ∗ ,
then, for m � 2 ,

‖Λm(T +Q)‖ � Km( max
l�n�m

‖Λn(T )‖+ max
l�n�m

‖Qn‖)
where K = 2((‖T‖+‖Q‖)2 +2‖T‖+1) and l = [m

3 ] is the integer part of m
3 .

Proof. Since

[(a+b)(c+d)−1]m = [(ac−1)+ (a+b)d+bc]m

= ∑
m1+m2+m3=m

(
m

m1,m2,m3

)
(a+b)m1bm2(ac−1)m3cm2dm1 ,

it follows that

Λm(T +Q) = ∑
m1+m2+m3=m

(
m

m1,m2,m3

)
(T ∗ +Q∗)m1Q∗m2Λm3(T )CTm2CCQm1C.

(10)
Assume that l = [m

3 ] is the integer part of m
3 . Put

Mi = ∑
m1+m2+m3=m and mi�l

(
m

m1,m2,m3

)
‖(T ∗ +Q∗)m1Q∗m2Λm3(T )CTm2Qm1C‖

for i = 1,2,3. Since m1 + m2 + m3 = m , it follows that mj � l for some j = 1,2,3.
Therefore, we get that

‖Λm(T +Q)‖
� ∑

m1+m2+m3=m

(
m

m1,m2,m3

)
‖(T ∗ +Q∗)m1Q∗m2Λm3(T )CTm2Qm1C‖

� M1 +M2 +M3. (11)

On the other hand, since ‖C‖ = 1, we get that

M3 = ∑
m1+m2+m3=m, m1�l

(
m

m1,m2,m3

)
‖(T ∗ +Q∗)m1Q∗m2Λm3(T )CTm2Qm1C‖

∗ � ∑
m1+m2+m3=m, m1�l

(
m

m1,m2,m3

)
(‖T ∗‖+‖Q∗‖)m1‖Q∗‖m2‖Λm3(T )‖‖T‖m2‖Q‖m1

∗ � max
l�n�m

‖Λn(T )‖ · ∑
m1+m2+m3=m,

m1�l

(
m

m1,m2,m3

)
(‖T‖+‖Q‖)m1‖Q‖m2‖T‖m2‖Q‖m1

∗ = max
l�n�m

‖Λn(T )‖ · ((‖T‖+‖Q‖)‖Q‖+‖T‖‖Q‖+1
)m

∗ � max
l�n�m

‖Λn(T )‖ ·
(K

2

)m
. (12)
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Since ‖Λk(T )‖ � (‖T‖+ 1)k for all k ∈ N , it follows from a similar method of (12)
that

M1 � max
l�n�m

‖CQnC‖ · ((‖T ∗‖+‖Q∗‖)+‖Q∗‖‖T‖+(‖T‖+1)
)m

� max
l�n�m

‖Qn‖ ·
(K

2

)m

and

M2 � max
l�n�m

‖Q∗n‖ · ((‖T ∗‖+‖Q∗‖)‖Q‖+‖T‖+(‖T‖+1)
)m

� max
l�n�m

‖Qn‖ ·
(K

2

)m
.

Hence (11) implies that

‖Λm(T +Q)‖ �
(K

2

)m
max

l�n�m
‖Λn(T )‖+2

(K
2

)m
max

l�n�m
‖Qn‖

� Km( max
l�n�m

‖Λn(T )‖+ max
l�n�m

‖Qn‖),
because m � 2. Hence this completes the proof. �

THEOREM 2.7. Let T ∈ L (H ) and let C be a conjugation on H . Then the
following statements hold:

(i) If T is an (∞,C)-isometric operator and Q is a quasinilpotent operator where
TQ = QT and T ∗CQC = CQCT ∗ , then T + Q is an (∞,C)-isometric operator with
conjugation C.

(ii) If {Tn} is a sequence of commuting (∞,C)-isometric operators with conjuga-
tion C such that limn→∞ ‖Tn−T‖ = 0 , then T is an (∞,C)-isometric operator.

Proof. (i) Since T is an (∞,C)-isometric operator and Q is a quasinilpotent op-
erator, it follows that for given 0 < ε < 1, there exists N such that

‖Λn(T )‖ � εn and ‖Qn‖ � εn

for all n � N . By Lemma 2.6, for m � 3N and l = [m
3 ] � N , we get that

‖Λm(T +Q)‖ 1
m � K

(
max

l�n�m
‖Λn(T )‖+ max

l�n�m
‖Qn‖) 1

m � K(2εn)
1
m � K(2ε l)

1
m

= 2
1
m Kε

l
m (= 2

1
m Kε

1
m [ m

3 ]) since ε < 1.

Since ε is arbitrary, limsupm→∞ ‖Λm(T + Q)‖ 1
m = 0. Hence T + Q is an (∞,C)-

isometric operator.
(ii) If TnTk = TkTn for all k,n ∈ N , then TTn = TnT for all n � 1. For a given

0 < ε < 1, there exists n0 such that

‖T −Tn0‖ � ε and ‖Λn(Tn0)‖ � εn
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for all n � n0 . By Lemma 2.6, for m � 3n0 and l = [m
3 ] � n0 , we obtain that

‖Λm(T )‖ 1
m = ‖Λm(Tn0 +T −Tn0)‖

1
m

� K
(

max
l�n�m

‖Λn(Tn0)‖+ max
l�n�m

‖T −Tn0‖n) 1
m

� 2
1
m Kε

l
m = 2

1
m Kε

1
m [ m

3 ].

Since ε is arbitrary, it follows that limsupm→∞ ‖Λm(T )‖ 1
m = 0. Hence T is an (∞,C)-

isometric operator. �

Let us recall that a closed subspace M is hyperinvariant for T if it is invariant
for every operator in {T}′ where {T}′ = {R ∈ L (H ) : TR = RT} .

COROLLARY 2.8. Let C be a conjugation on H and Q be a nonzero quasinilpo-
tent operator on H . Then μI + Q is an (∞,C)-isometric operator with |μ | = 1 .
Moreover, μI +Q has a nontrivial hyperinvariant subspace.

Proof. If T = μI for |μ | = 1, then T is clearly an (∞,C)-isometric operator.
Hence the proof follows from Theorem 2.7. For the second statement, we know from
[6, Theorem 2.18] that Q has a nontrivial hyperinvariant subspace. Hence μI +Q has
a nontrivial hyperinvariant subspace. �

COROLLARY 2.9. Let C be the canonical conjugation on H given by

C(
∞

∑
n=0

xnen) =
∞

∑
n=0

xnen

where {en} is an orthonormal basis of H with Cen = en . If W is the weighted shift
on H defined by Wen = αnen+1 (n = 0,1,2, . . .) where {αn}∞

n=0 is a weight sequence
which is decreasing to 0 , then T = I +W is an (∞,C)-isometric operator.

Proof. For any ε > 0, since W is a quasinilpotent operator, σ(W ) = {0} , WC =
CW , and Λm(T ) = Λm(W ) , it follows from [5] that

limsup
m→∞

‖Λm(T )‖ 1
m = limsup

m→∞
‖Λm(W )‖ 1

m � ε.

Since ε is arbitrary, it follows that T is an (∞,C)-isometric operator. �

EXAMPLE 2.10. Under the same conjugation C as in Corollary 2.9, if W is the
weighted shift on H defined by Wen = 1

n+1en+1 (n = 0,1,2, . . .) , then T = I +W is
an (∞,C)-isometric operator from Corollary 2.9.

Finally , we study properties of products of (∞,C)-isometric operators.
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LEMMA 2.11. Let T,S ∈ L (H ) satisfy TS = ST and S∗(CTC) = (CTC)S∗ .
Then

Λm(TS) =
m

∑
j=0

(
m
j

)
T ∗ jΛm− j(T )CT jCΛ j(S) (13)

where Λ0(T ) = I and Λ0(S) = I .

Proof. Assume that TS = ST and S∗(CTC) = (CTC)S∗ . Since S∗ j(CTkC) =
(CTkC)S∗ j holds for all j,k ∈ N and

(abcd−1)m = [(ab−1)+a(cd−1)b]m

=
m

∑
j=0

(
m
j

)
a j(ab−1)m− jb j(cd−1) j,

it follows that

Λm(TS) =
m

∑
j=0

(−1)m− j
(

m
j

)
(TS)∗m− jC(TS)m− jC

=
m

∑
j=0

(
m
j

)
T ∗ jΛm− j(T )CT jCΛ j(S)

where Λ0(T ) = I and Λ0(S) = I . �

THEOREM 2.12. Let T and S be (∞,C)-isometric operators with conjugation
C. Assume that TS = ST and S∗(CTC) = (CTC)S∗ . Then TS is an (∞,C)-isometric
operator.

Proof. Assume that T and S are (∞,C)-isometric operators. Then for a given
0 < ε < 1, there exist N1 and N2 such that

‖Λn1(T )‖ � εn and ‖Λn2(S)‖ � εn

for n1 � N1 and n2 � N2. Put N = max{N1,N2} . Then it suffices to show that there is
a constant K > 0 such that for m � 2N ,

‖Λm(TS)‖ � Kmε
m
2 .

Let l = [m
2 ] denote the integer part of m

2 . Then by (13), we have

Λm(TS) =
l

∑
j=0

(
m
j

)
T ∗ jΛm− j(T )CT jCΛ j(S)

+
m

∑
j=l+1

(
m
j

)
T ∗ jΛm− j(T )CT jCΛ j(S). (14)

If j � l = [m
2 ], then m− j � [m

2 ] = l � N, and so ‖Λm− j(T )‖ � εm− j � ε l . Since
‖C‖ = 1, it follows that ‖Λ j(S)‖ � (‖S‖+1) j for all j � 1. Thus by (14) we get that

‖
l

∑
j=0

(
m
j

)
T ∗ jΛm− j(T )CT jCΛ j(S)‖
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�
l

∑
j=0

(
m
j

)
‖Λm− j(T )‖‖T ∗ j‖‖CT jC‖‖Λ j(S)‖

�
l

∑
j=0

(
m
j

)
εm− j‖T‖ j‖T‖ j‖(‖S‖+1) j

� ε l
m

∑
j=0

(
m
j

)
‖T‖2 j(‖S‖+1) j = ε l(1+‖T‖2(‖S‖+1))m. (15)

Similarly, if j � l +1 � N, then ‖Λ j(S)‖ � ε l and hence we have

‖
m

∑
j=l+1

(
m
j

)
T ∗ jΛm− j(T )CT jCΛ j(S)‖ � ε l(‖T‖2 +(‖T‖+1))m. (16)

From (15) and (16), we know that for n � 2N

‖Λm(TS)‖ � ε [ m
2 ]((1+‖T‖2(‖S‖+1))m +(‖T‖2 +(‖T‖+1))m).

Thus limsupm→∞ ‖Λm(TS)‖ 1
m = 0. Hence TS is an (∞,C)-isometric operator. �

We illustrate the following example by Theorem 2.12.

EXAMPLE 2.13. Let C : H → H be the conjugation given by

C(
∞

∑
n=1

xnen) =
∞

∑
n=1

xnen

where {xn} is a sequence in C with ∑∞
n=1 |xn|2 < ∞ . Suppose that A,B ∈ L (H ) are

the weighted shifts given by Aen = αnen+1 and Ben = βnen+1 with βn = 1
n for all n � 1.

If |αn|2 = 1, αn−1
αn

= n−1
n , and αn+1

αn
= n

n+1 for n � 2, then A is a (1,C)-isometry and
it is easy to compute

ACB∗Cen = ACB∗en = AC(βn−1en−1) = Aβn−1en−1 = αn−1βn−1en

and
CB∗CAen = CB∗C(αnen+1) = CB∗(αnen+1) = C(αnβnen) = αnβnen.

Moreover, ABen = Aβnen+1 = βnαn+1en+1 and BAen = Bαnen = αnβn+1en+1. There-
fore, A and B + I are (∞,C)-isometric operators. Hence A(I + B) is an (∞,C)-
isometric operator from Theorem 2.12.

COROLLARY 2.14. Let T and S be (∞,C)-isometric operators with conjugation
C. Suppose that T ∗(CTC) = (CTC)T ∗ . Then the following arguments hold.

(i) If TS = ST and S∗(CTC)= (CTC)S∗ , then T kS j and S jT k are (∞,C)-isometric
operators for any k, j ∈ N .

(ii) Tn is an (∞,C)-isometric operator for any n ∈ N .
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Proof. (i) By Theorem 2.12, TS is an (∞,C)-isometric operator. It suffices to
show that TkS is an (∞,C)-isometric operator. Since TS = ST , S∗(CTC) = (CTC)S∗ ,
and T ∗(CTC) = (CTC)T ∗ , it follows that Tk−1(TS) = (TS)Tk−1 and

(TS)∗CTk−1C = S∗T ∗(CTC)k−1 = (CTC)k−1S∗T ∗ = CTk−1C(TS)∗.

By Theorem 2.12, Tk−1TS = TkS is an (∞,C)-isometric operator. Similarly, TkS j

is an (∞,C)-isometric operator. Also, we can show that S jT k is an (∞,C)-isometric
operator by a similar method.

(ii) If n = 2, then it is clear. Assume that the above statement holds for n = k . Put
S = Tk . Then TS = Tk+1 is an (∞,C)-isometric operator from Theorem 2.12. �

Let us recall that H1 ⊗H2 denotes the completion (endowed with a sensible uni-
form cross-norm) of the algebraic tensor product H1 ⊗H2 of H1 and H2 where
H1 and H2 are separable complex Hilbert spaces. For operators T ∈ L (H1) and
S ∈ L (H2) , we define the tensor product operator T ⊗S on L (H1 ⊗H2) by

(T ⊗S)(
n

∑
j=1

α jx j ⊗ y j) =
n

∑
j=1

α jT x j ⊗Sy j.

Then it is well known that T ⊗S ∈ L (H1 ⊗H2) .
The definition of T ⊗S is extended from these finite linear combinations of simple

tensors to the whole space.
Since T ⊗ S = (T ⊗ I)(I ⊗ S) = (I ⊗ S)(T ⊗ I) and T ⊗ I = ⊕∞

n=1T , it is clear
that an operator T is an (m,C)-isometric operator with conjugation C if and only if
T ⊗ I and I ⊗T are (m,C)-isometric operators with conjugation C . If C and D are
conjugations on H , we define C⊗D on H ⊗H by

(C⊗D)(
n

∑
j=1

α jx j ⊗ y j) =
n

∑
j=1

α jCx j ⊗Dyj.

Then C⊗D is a conjugation on H ⊗H (see [4]).

COROLLARY 2.15. If T is an (∞,C)-isometric operator and S is an (∞,D)-
isometric operator, then T ⊗S is an (∞,C⊗D)-isometric operator.

Proof. It is clear that T ⊗ I is (∞,C)-isometric operator and I⊗ S is an (∞,D)-
isometric operator, respectively. Since C⊗D is a conjugation on H ⊗H by [4] and
(T ⊗ I, I⊗S) is a commuting pair and satisfies

(I⊗S)∗
(
(C⊗D)(T ⊗ I)(C⊗D)

)
=
(
(C⊗D)(T ⊗ I)(C⊗D)

)
(I⊗S)∗,

it follows from Theorem 2.12 that (T ⊗ I)(I ⊗ S) = T ⊗ S is an (∞,C⊗D)-isometric
operator.
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PROPOSITION 2.16. If T ∈ L (H ) satisfies T ∗CTC =CTCT ∗ , then the follow-
ing statements hold.

(i) T is an (∞,C)-isometric operator if and only if T ∗ is an (∞,C)-isometric
operator.

(ii) If T is an invertible and (∞,C)-isometric operator, then T−1 is an (∞,C)-
isometric operator.

Proof. (i) Suppose that T is an (∞,C)-isometric operator and T ∗CTC =CTCT ∗ .
Since Λm(T ∗) = ∑m

j=0(−1) j
(m

j

)
Tm− jCT ∗m− jC , it follows that

CΛm(T ∗)C =
m

∑
j=0

(−1) j
(

m
j

)
CTm− jCT ∗m− j

=
m

∑
j=0

(−1) j
(

m
j

)
T ∗m− jCTm− jC = Λm(T ),

and Λm(T ∗) = CΛm(T )C. Therefore, we have

limsup
m→∞

‖Λm(T ∗)‖ 1
m = limsup

m→∞
‖CΛm(T )C‖ 1

m

= limsup
m→∞

‖Λm(T )‖ 1
m = 0.

Hence T ∗ is an (∞,C)-isometric operator. The converse implication holds by a similar
method.

(ii) Note for any a,b ∈ C ,

am(a−1b−1−1)mbm = (1−ab)m =
m

∑
j=0

(−1) j
(

m
j

)
am− jbm− j.

Take a = T ∗ and b =CTC . Then we get Λm(T ) = (−1)m(T ∗)mΛm(T−1)(CTC)m and
so (−1)m(T ∗)−mΛm(T ) = Λm(T−1)(CTC)m. Therefore,

(−1)m(T ∗)−mΛm(T )CT−mC = Λm(T−1).

Hence
limsup

m→∞
‖Λm(T−1)‖ 1

m � limsup
m→∞

‖T ∗−1‖‖Λm(T )‖ 1
m ‖T−1‖ = 0.

So T−1 is an (∞,C)-isometric operator. �

COROLLARY 2.17. Under the same hypothesis as in Proposition 2.16 , if T is
an invertible and (∞,C)-isometric operator, then T−n and T ∗−n are (∞,C)-isometric
operators for any n ∈ N .

Proof. The proof follows from Proposition 2.16 and Corollary 2.14. �
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