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Abstract. For every n ∈ N and every field K , let M(n× n,K) be the set of n× n matrices
over K , let N(n,K) be the set of nilpotent n× n matrices over K and let D(n,K) be the set
of n× n matrices over K which are diagonalizable over K , that is, which are diagonalizable in
M(n× n,K) . Moreover, if K is a field with an involutory automorphism, let R(n,K) be the set
of normal n×n matrices over K .

In this short note we prove that the maximal dimension of an affine subspace in N(n,K)
is n(n−1)

2 and, if the characteristic of the field is zero, an affine not linear subspace in N(n,K)
has dimension less than or equal to n(n−1)

2 −1 . Moreover we prove that the maximal dimension
of an affine subspace in R(n,C) is n , the maximal dimension of a linear subspace in D(n,R) is
n(n+1)

2 , while the maximal dimension of an affine not linear subspace in D(n,R) is n(n+1)
2 −1 .

1. Introduction

There is a wide literature on the maximal dimension of linear or affine subspaces
of matrices with specific characteristics. In particular we quote the following results.
For every m,n ∈ N and every field K , let M(m× n,K) be the vector space of m× n
matrices over K . Let N(n,K) be the set of nilpotent n× n matrices over K and let
D(n,K) be the set of n×n matrices over K which are diagonalizable over K , that is,
which are diagonalizable in M(n×n,K) . Moreover, if K is a field with an involutory
automorphism, let R(n,K) be the set of normal n×n matrices over K , that is, the set
of matrices commuting with the conjugate transpose, where conjugation is given by the
involutory automorphism.

THEOREM 1. Gerstenhaber, Serezhkin Let K be a field. The maximal dimension
of a linear subspace in N(n,K) is n(n−1)

2 .

The theorem above was proved by Gerstenhaber under the assumption that K has
at least n elements (see [10]) and the result was generalized by Serezhkin for any field
in [16]. We mention also that in [11], the authors gave a new simple proof of the result.
In [12] and [7] the authors generalized it as follows:
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THEOREM 2. (Quinlan, De Seguins Pazzis) Let K be a field. The maximal di-
mension of a linear subspace of n×n matrices over K with no nonzero eigenvalue in
K is n(n−1)

2 .

As observed in [6], the statement above is equivalent to the statement that the
maximal dimension of an affine subspace of invertible n×n matrices over K is n(n−1)

2 .
Obviously, invertibility is equivalent to being of rank n , so we can say that this is a
theorem on maximal dimension of an affine subspace of matrices with constant rank.
We say that an affine subspace S of M(m× n,K) has constant rank r if every matrix
of S has rank r and we say that a linear subspace S of M(m×n,K) has constant rank
r if every nonzero matrix of S has rank r . There are many other theorems on the
maximal dimension of a linear or an affine subspace of matrices with constant rank.
For instance, the papers [2], [4], [5], [17] deal with the maximal dimension of a linear
subspace with constant rank r in M(m×n,C) or in the space of the complex symmetric
n×n matrices; we quote also the more recent results on the maximal dimension of an
affine subspace with constant rank r in the space of the m× n matrices, in the space
of symmetric n× n matrices and in the space of antisymmetric (i.e. skew-symmetric)
n× n matrices, see [8], [9], [13], [14], [15]. There are also theorems on the maximal
dimension of a linear or an affine subspace of matrices whose rank is bounded below or
above or both below and above, see for instance [1], [7], [8], [15] and the introduction
of the last paper for a more detailed description of the results.

In this short note we focus on the maximal dimension of affine subspaces in
N(n,K) for any field K and on the maximal dimension of affine subspaces in R(n,C)
and in D(n,R) ; precisely we prove the following theorems.

THEOREM 3. Let K be a field. The maximal dimension of an affine subspace in
N(n,K) is n(n−1)

2 .
Moreover, if the characteristic of K is zero, an affine not linear subspace in

N(n,K) has dimension less than or equal to n(n−1)
2 −1 .

THEOREM 4. The maximal dimension of an affine subspace in R(n,C) is n .

THEOREM 5. The maximal dimension of a linear subspace in D(n,R) is n(n+1)
2 ,

while the maximal dimension of an affine not linear subspace in D(n,R) is n(n+1)
2 −1 .

2. Proof of the theorems

NOTATION 6. Let n ∈ N−{0} . For any field K , we denote the n× n identity
matrix over K by IK

n . We omit the superscript and the subscript when it is clear from
the context.

We denote by EK
i, j the n×n matrix, whose (i, j)-entry is 1 and all the other entries

are zero. We omit the superscript when it is clear from the context.
We denote by A(n,K) the subspace of the antisymmetric (also called skew-symme-

tric) matrices of M(n×n,K) .
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For any square matrix A , let S2(A) be the sum of the 2×2 principal minors of A .
For any complex matrix A , let A∗ be the transpose of the conjugate matrix of A .
For any m×n matrix A over a field K , let fA : Kn → Km be the linear map

x �−→ Ax.

To prove Theorem 3 we follow the guidelines of the proof of Theorem 1 in [11]
and firstly we need to generalize some lemmas in [11].

LEMMA 7. Let n ∈ N−{0} and K be a field. Let R ∈ M(n× n,K) and U ∈
N(n,K) . Then

S2(R)−S2(R+U) = tr(RU).

Proof. • First let us suppose that U is in Jordan form. Then

S2(R)−S2(R+U)
= ∑

i, j∈{1,...,n}
i< j

(Ri,iR j, j −Ri, jR j,i)− ∑
i, j∈{1,...,n}

i< j

((R+U)i,i(R+U) j, j − (R+U)i, j(R+U) j,i)

= ∑
i, j∈{1,...,n}

i< j

(Ri,iR j, j −Ri, jR j,i)− ∑
i, j∈{1,...,n}

i< j

(Ri,iR j, j − (R+U)i, jR j,i)

= ∑
i∈{1,...,n−1}

Ui,i+1Ri+1,i = ∑
j∈{1,...,n}

∑
i∈{1,...,n}

Rj,iUi, j

= ∑
j∈{1,...,n}

(RU) j, j = tr(RU).

• Now let U be generic. Let C ∈GL(n,K) be such that C−1UC is in Jordan form.
Then

S2(R)−S2(R+U) = S2(C−1RC)−S2(C−1(R+U)C)
= S2(C−1RC)−S2(C−1RC+C−1UC)
= tr(C−1RCC−1UC) = tr(RU),

where in the last but one equality we have used the previous item. �

LEMMA 8. Let n∈N−{0} and K be a field. Let P, A, B∈M(n×n,K) such that
P, P+A, P+B, P+A+B∈ N(n,K) . Then tr(AB) = 0 .

Proof. By the previous lemma, we have:

S2(A)−S2(A+P) = tr(AP)

(since P is nilpotent) and

S2(A)−S2(A+B+P) = tr(A(B+P))
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(since B+P is nilpotent). Hence we get:

tr(AB) = tr(A(B+P))− tr(AP)
= S2(A)−S2(A+B+P)−S2(A)+S2(A+P)
= −S2(A+B+P)+S2(A+P) = −0+0 = 0,

where the last but one equality holds because A+P and A+B+P are nilpotent. �
The following theorem will be useful to prove Theorem 4 and probably it is well-

known; for the convenience of the reader we include the proof here.

THEOREM 9. Let K be a field. If Z is a linear subspace of M(n×n,K) such that
A,B are simultaneously diagonalizable for every A,B ∈ Z , then there exists a basis B
of Kn such that every element of B is an eigenvector of every element of Z .

To prove it, we need the following proposition.

PROPOSITION 10. Let K be a field. If {A1, . . . ,Ar} is a subset of M(n× n,K)
such that Ai and Aj are simultaneously diagonalizable for every i, j ∈ {1, . . . ,r} , then
A1, . . . ,Ar are collectively simultaneously diagonalizable, that is, there exists a basis
B of Kn such that every element of B is an eigenvector of Ai for every i ∈ {1, . . . ,r} .

Proof. We prove the statement by induction on n .
In the case n = 1 there is nothing to prove.
So we suppose that the statement is true for k× k matrices with k < n and we

prove it for n×n matrices.
Let A1, . . . ,Ar be pairwise simultaneously diagonalizable n×n matrices.
If, for every i = 1, . . . ,r , the matrix Ai has only one eigenvalue, then, for every

i = 1, . . . ,r , the matrix Ai is a multiple of the identity matrix and the statement is
obvious.

So we can suppose that for some i the matrix Ai has more than one eigenvalue, for
instance we can suppose that A1 has more than one eigenvalue. Let E be an eigenspace
of A1 and let E ′ be the sum of the other eigenspaces of A1 ; call m the dimension of
E . Let A be an ordered basis of E and A ′ be an ordered basis of E ′ ; let B be the
ordered basis of Kn defined as the union of A and A ′ .

For every i = 2, . . . ,r , it follows from the simultaneous diagonalizabilty of Ai and
A1 that the spaces E and E ′ are preserved by fAi . Hence, for every i = 1, . . . ,r , the
matrix Ci expressing fAi (see Notation 6) in the basis B is a block diagonal matrix
with the first block m×m , call it Hi , and the second block (n−m)× (n−m) , call it
Gi :

Ci =
(

Hi 0
0 Gi

)
.

For every i, j ∈ {1, . . . ,r} the matrix Ci and the matrix Cj commute and they are diag-
onalizable since they are similar respectively to Ai and Aj ; therefore the matrix Hi and
the matrix Hj commute and they are diagonalizable and the matrix Gi and the matrix
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Gj commute and they are diagonalizable. So the matrices H1, . . . ,Hr are pairwise si-
multaneously diagonalizable and the matrices G1, . . . ,Gr are pairwise simultaneously
diagonalizable.

Hence, by induction assumption, the matrices H1, . . . ,Hr are collectively simul-
taneously diagonalizable and the matrices G1, . . . ,Gr are collectively simultaneously
diagonalizable. Therefore the matrices C1, . . . ,Cr are collectively simultaneously di-
agonalizable (they are diagonalizable by a block diagonal matrix whose first block is
a matrix diagonalizing H1, . . . ,Hr and whose second block is a matrix diagonalizing
G1, . . . ,Gr ). Thus the matrices A1, . . . ,Ar are collectively simultaneously diagonaliz-
able. �

Proof of Theorem 9. Let {A1, . . . ,Ar} be a basis of Z ; by Proposition 10 there
exists a basis B of Kn such that every element of B is an eigenvector of Ai for every
i∈ {1, . . . ,r} . But then every element of B is an eigenvector of any linear combination
of the matrices Ai , that is of every element of Z . �

As we have already said the proof of Theorem 3 is very similar to the proof of
Theorem 1 in [11] but we need to use Lemma 8.

Proof of Theorem 3. Let P∈M(n×n,K) and let Z be a linear subspace of M(n×
n,K) . Let S = P+Z and suppose S ⊂ N(n,K) . We want to show that dim(S) , that is

dim(Z) , is less than or equal to n(n−1)
2 . We can suppose that P is in Jordan form.

Let T be the set of the strictly upper triangular matrices.
Consider the bilinear form on M(n×n,K) defined by (A,B) �→ tr(AB). It is non-

degenerate and, with respect to this bilinear form, we have that

T⊥ = {A ∈ M(n×n,K)| A upper triangular}.
Let Z1 = Z∩T and let Z2 be a subspace such that Z = Z1⊕Z2 . Observe that

Z2 ∩T⊥ ⊂ T, (1)

in fact, if A is an upper triangular matrix such that P+A is nilpotent, then A is strictly
upper triangular (remember that P is in Jordan form and nilpotent).

Moreover, for the definition of Z1 and Z2 , we have that Z2 ∩T = {0}. From this
and from (1), we get:

Z2 ∩T⊥ = {0}. (2)

Obviously, since Z1 ⊂ T , we have that

T⊥ ⊂ Z⊥
1 . (3)

Finally, from Lemma 8, we have that

Z2 ⊂ Z⊥
1 (4)

From (2), (3) and (4), we get that Z2⊕T⊥ ⊂ Z⊥
1 , hence

dim(Z2)+dim(T⊥) � dim(Z⊥
1 ) = n2−dim(Z1),
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thus

dim(Z) � n2−dim(T⊥) =
n(n−1)

2
.

Suppose now that the characteristic of K is 0 and that P �∈ Z . Let {z1, . . . ,zh} be a
basis of Z . Then the span of P and Z is generated by P,P+z1, . . . ,P+zh . The additive
semigroup generated by P,P + z1, . . . ,P + zh consists only of nilpotents. Theorem 3
in the paper [11] states that the linear space generated by a set E of n× n matrices
over a field of characteristic 0 consists only of nilpotents if and only if the additive
semigroup generated by E consists only of nilpotents. Hence the linear space generated
by P,P+ z1, . . . ,P+ zh , that is the span of P and Z , consists only of nilpotents. Hence,
by Theorem 1 the dimension of the span of P and Z is less than or equal to n(n−1)

2 ,

thus the dimension of Z is less than or equal to n(n−1)
2 −1. �

REMARK 11. The second statement of Theorem 3 need not be true if the charac-
teristic of the field K is not zero: take K = Z/2, n = 2 and S = E1,2 + 〈E1,2 +E2,1〉 ; it
consists only of E1,2 and of E2,1 , which are both nilpotent, and its dimension is 1, that

is n(n−1)
2 .

Proof of Theorem 4. Let P∈M(n×n,C) and let Z be a linear subspace of M(n×
n,C) . Let S = P+Z and suppose S ⊂ R(n,C) . We want to show that dim(S) , that is
dim(Z) , is less than or equal to n .

Let A ∈ Z ; then

(P+ sA)(P∗+ sA∗) = (P∗ + sA∗)(P+ sA) ∀s ∈ R,

and this implies

PP∗ + s(AP∗+PA∗)+ s2AA∗ = P∗P+ s(P∗A+A∗P)+ s2A∗A ∀s ∈ R,

hence (since P is normal)

s(AP∗ +PA∗)+ s2AA∗ = s(P∗A+A∗P)+ s2A∗A ∀s ∈ R,

in particular, if we take s = 1 and s =−1, we get that A is normal. Hence Z ⊂ R(n,C) .
So, to prove our statement, it is sufficient to prove that, if Z is a linear subspace in

R(n,C) , then dim(Z) � n .
Let A,B ∈ Z . Hence A+ zB∈ Z ⊂ R(n,C) for any z ∈ C , thus

(A+ zB)(A∗ + zB∗) = (A∗ + zB∗)(A+ zB),

that is

AA∗ −A∗A+ z(BA∗−A∗B)+ z(AB∗ −B∗A)+ |z|2(BB∗ −B∗B) = 0.

Since A and B are normal, we get that, for any r,s ∈ R ,

(r+ is)(BA∗ −A∗B)+ (r− is)(AB∗−B∗A) = 0.
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If we take first r = 1 and s = 0 and then r = 0 and s = 1, we get respectively

(BA∗ −A∗B)+ (AB∗−B∗A) = 0

and
(BA∗ −A∗B)− (AB∗−B∗A) = 0.

Therefore
BA∗ −A∗B = AB∗−B∗A = 0.

In particular A and B∗ are simultaneously diagonalizable and so, being normal, they
are unitarily simultaneously diagonalizable. Since a unitary matrix diagonalizing B∗
diagonalizes also B , we get that A and B are simultaneously diagonalizable. So we
have proved that every couple of matrices in Z is simultaneously diagonalizable. By
Theorem 9 there is a basis B of Cn such that every element of B is an eigenvector
of every element of Z . Let C be an (n×n)-matrix whose columns are the elements of
B . Hence C−1ZC is a linear subspace of diagonal matrices. So

dim(Z) = dim(C−1ZC) � n.

So we have proved that the dimension of an affine subspace in R(n,C) is less than or
equal to n . Obviously the diagonal n× n matrices form a linear subspace in R(n,C)
of dimension n , so the maximal dimension of an affine subspace in R(n,C) is equal to
n . �

REMARK 12. Oberve that the proof of Theorem 4 depends in essential way on
the properties of the complex field and for any field with an involutory automorphism
the result need not be true, as we can see if we take the involutory automorphism equal
to the identity (so that the normal matrices coincide with the symmetric ones).

Proof of Theorem 5. The first statement is obvious, in fact a linear subspace con-
tained in D(n,R) can intersect A(n,R) only in 0, so its dimension must be less than or

equal to n(n+1)
2 and the linear subspace of the symmetric matrices achieves this dimen-

sion.
Now let S be an affine not linear subspace contained in D(n,R) ; let

S = P+Z,

where Z is a linear subspace (and obviously P �∈ Z ). We want to show that

dim(Z) � n(n+1)
2

−1.

Let W be the span of P and Z . If the dimension of Z were greater than or equal to
n(n+1)

2 , then the dimension of W would be greater than or equal to n(n+1)
2 + 1, so the

intersection of W and A(n,R) would contain a nonzero matrix Y .
Since A(n,R)∩D(n,R) = {0} and W \Z ⊂ D(n,R) , we would have that Y ∈ Z .

Hence P+ tY would be in S for every t ∈ R , therefore it would be diagonalizable over
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R for every t ∈ R . But Y is nonzero and antisymmetric, hence it has at least a nonzero
pure imaginary eigenvalue; so, since the roots of a complex polynomial vary conti-
nously as a function of the coefficients (see [3]), for a sufficiently large t at least one of
the complex eigenvalues of P+ tY is not real, hence P+ tY cannot be diagonalizable
over R . So we get a contradiction, hence we must have dim(S) = dim(Z) � n(n+1)

2 −1.
Now let U be the span of the matrices Ei,i for i = 2, . . . ,n and of Ei, j +Ej,i for

i, j ∈ {1, . . . ,n} with i < j . Obviously E1,1 +U is an affine not linear subspace of

dimension n(n+1)
2 −1 whose elements are symmetric and hence diagonalizable over R .

Thus we have proved that the maximal dimension of an affine not linear subspace in
D(n,R) is n(n+1)

2 −1. �

REMARK 13. One can wonder if the only linear subspace of maximal dimension
in D(n,R) is the subspace of the symmetric matrices, but the answer is obviously no:

for instance the linear subspace

{(
a b
2b c

)
| a,b,c ∈ R

}
is contained in D(2,R) and

has dimension 3.
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